Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
G3 (Bethesda) ; 14(5)2024 05 07.
Article in English | MEDLINE | ID: mdl-38412549

ABSTRACT

Alzheimer's disease is the main cause of aging-associated dementia, for which there is no effective treatment. In this work, we reanalyze the information of a previous genome wide association study, using a new pipeline design to identify novel potential drugs. With this approach, ribonucleoside-diphosphate reductase gene (RRM2B) emerged as a candidate target and its inhibitor, 2', 2'-difluoro 2'deoxycytidine (gemcitabine), as a potential pharmaceutical drug against Alzheimer's disease. We functionally verified the effect of inhibiting the RRM2B homolog, rnr-2, in an Alzheimer's model of Caenorhabditis elegans, which accumulates human Aß1-42 peptide to an irreversible paralysis. RNA interference against rnr-2 and also treatment with 200 ng/ml of gemcitabine, showed an improvement of the phenotype. Gemcitabine treatment increased the intracellular ATP level 3.03 times, which may point to its mechanism of action. Gemcitabine has been extensively used in humans for cancer treatment but at higher concentrations. The 200 ng/ml concentration did not exert a significant effect over cell cycle, or affected cell viability when assayed in the microglia N13 cell line. Thus, the inhibitory drug of the RRM2B activity could be of potential use to treat Alzheimer's disease and particularly gemcitabine might be considered as a promising candidate to be repurposed for its treatment.


Subject(s)
Alzheimer Disease , Caenorhabditis elegans , Deoxycytidine , Disease Models, Animal , Caenorhabditis elegans/drug effects , Alzheimer Disease/drug therapy , Animals , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use , Amyloid beta-Peptides/metabolism , Humans , Gemcitabine , Ribonucleoside Diphosphate Reductase/genetics , Ribonucleotide Reductases/antagonists & inhibitors , Ribonucleotide Reductases/metabolism , Adenosine Triphosphate/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , RNA Interference
2.
Nat Commun ; 12(1): 49, 2021 01 04.
Article in English | MEDLINE | ID: mdl-33397961

ABSTRACT

Aging and fertility are two interconnected processes. From invertebrates to mammals, absence of the germline increases longevity. Here we show that loss of function of sul-2, the Caenorhabditis elegans steroid sulfatase (STS), raises the pool of sulfated steroid hormones, increases longevity and ameliorates protein aggregation diseases. This increased longevity requires factors involved in germline-mediated longevity (daf-16, daf-12, kri-1, tcer-1 and daf-36 genes) although sul-2 mutations do not affect fertility. Interestingly, sul-2 is only expressed in sensory neurons, suggesting a regulation of sulfated hormones state by environmental cues. Treatment with the specific STS inhibitor STX64, as well as with testosterone-derived sulfated hormones reproduces the longevity phenotype of sul-2 mutants. Remarkably, those treatments ameliorate protein aggregation diseases in C. elegans, and STX64 also Alzheimer's disease in a mammalian model. These results open the possibility of reallocating steroid sulfatase inhibitors or derivates for the treatment of aging and aging related diseases.


Subject(s)
Alzheimer Disease/enzymology , Alzheimer Disease/pathology , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/enzymology , Caenorhabditis elegans/physiology , Longevity , Steryl-Sulfatase/metabolism , Sulfatases/metabolism , Animals , Disease Models, Animal , Epistasis, Genetic , Gonads/metabolism , Mice , Phenotype , Sensory Receptor Cells/metabolism , Steroids/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...