Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 11(1): 6078, 2020 11 27.
Article in English | MEDLINE | ID: mdl-33247138

ABSTRACT

Understanding SARS-CoV-2 associated immune pathology is crucial to develop pan-effective vaccines and treatments. Here we investigate the immune events from the acute state up to four weeks post SARS-CoV-2 infection, in non-human primates (NHP) with heterogeneous pulmonary pathology. We show a robust migration of CD16 expressing monocytes to the lungs occurring during the acute phase, and we describe two subsets of interstitial macrophages (HLA-DR+CD206-): a transitional CD11c+CD16+ cell population directly associated with IL-6 levels in plasma, and a long-lasting CD11b+CD16+ cell population. Trafficking of monocytes is mediated by TARC (CCL17) and associates with viral load measured in bronchial brushes. We also describe associations between disease outcomes and high levels of cell infiltration in lungs including CD11b+CD16hi macrophages and CD11b+ neutrophils. Accumulation of macrophages is long-lasting and detectable even in animals with mild or no signs of disease. Interestingly, animals with anti-inflammatory responses including high IL-10:IL-6 and kynurenine to tryptophan ratios show less severe illness. Our results unravel cellular mechanisms of COVID-19 and suggest that NHP may be appropriate models to test immune therapies.


Subject(s)
COVID-19/immunology , Disease Models, Animal , Lung/immunology , SARS-CoV-2/immunology , Acute Disease , Animals , COVID-19/diagnosis , COVID-19/pathology , COVID-19/virology , Cytokines/metabolism , Disease Progression , Female , Humans , Lung/cytology , Lung/virology , Macaca mulatta/immunology , Macaca mulatta/virology , Macrophages/immunology , Male , Monocytes/immunology , Monocytes/metabolism , Neutrophils/immunology , Neutrophils/metabolism , SARS-CoV-2/isolation & purification , Severity of Illness Index , Viral Load/immunology , Virus Replication/immunology
2.
J Med Primatol ; 43(1): 31-43, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24266615

ABSTRACT

INTRODUCTION: Quantification of plasma viral load (PVL) is used to monitor disease progression in SIV-infected macaques. This study was aimed at optimizing of performance characteristics of the quantitative PCR (qPCR) PVL assay. METHODS: The PVL quantification procedure was optimized by inclusion of an exogenous control hepatitis C virus armored RNA (aRNA), a plasma concentration step, extended digestion with proteinase K, and a second RNA elution step. Efficiency of viral RNA (vRNA) extraction was compared using several commercial vRNA extraction kits. Various parameters of qPCR targeting the gag region of SIVmac239, SIVsmE660, and the LTR region of SIVagmSAB were also optimized. RESULTS: Modifications of the SIV PVL qPCR procedure increased vRNA recovery, reduced inhibition and improved analytical sensitivity. The PVL values determined by this SIV PVL qPCR correlated with quantification results of SIV RNA in the same samples using the 'industry standard' method of branched-DNA (bDNA) signal amplification. CONCLUSIONS: Quantification of SIV genomic RNA in plasma of rhesus macaques using this optimized SIV PVL qPCR is equivalent to the bDNA signal amplification method, less costly and more versatile. Use of heterologous aRNA as an internal control is useful for optimizing performance characteristics of PVL qPCRs.


Subject(s)
Macaca mulatta , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction/methods , Simian Acquired Immunodeficiency Syndrome/blood , Simian Immunodeficiency Virus/genetics , Animals , Genome, Viral , RNA, Viral/blood , Reproducibility of Results , Sensitivity and Specificity , Simian Acquired Immunodeficiency Syndrome/virology , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL
...