Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Rapid Commun Mass Spectrom ; 14(14): 1301-6, 2000.
Article in English | MEDLINE | ID: mdl-10918384

ABSTRACT

Self-assembled monolayers (SAMs) of three ruthenium complexes, [Ru(L)(2)](PF(6))(2), [Ru(L)(tpyPO(3))](PF(6))(2), and [Ru(L18)(tpyPO(3))](PF(6))(2), were prepared on evaporated gold films on glass or stainless steel plates; where L = 2, 6-bis(benzimidazoyl)pyridine, tpyPO(3) = 2,6-bis(2,2':6', 2"-terpyridyl)pyridine phosphanate, and L18 = 2, 6-bis(N-octadecylbenzimidazoyl)pyridine. Structures of these SAM complexes were studied by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). The SAMs were either prepared by direct binding of Ru-complexes to Au films by alkanethiol or by the multilayer method. In the multilayer method 1,4-thiobutylphosphate was used to form a base layer on an Au film, and the base layer was then chemically bridged to the Ru-complexes by zirconium phosphate. MALDI-TOFMS of SAM1, that had been prepared by direct binding of [Ru(L)(2)](PF(6))(2) to the Au film by an octanethiol group, showed cleavage at the S-Au linkages and elimination of the counter anion to yield a molecular ion and its dimeric ion. On the other hand, SAM2 and SAM3, which had been prepared by bridging Ru-complexes [Ru(L)(tpyPO(3))](PF(6))(2) or [Ru(L18)(tpyPO(3))](PF(6))(2) to the base layers with zirconium phosphate, showed dissociation from the base layers and elimination of the counter anion to give ions of the Ru complex molecules and their fragmentation ions. No molecular ion containing the base layer resulting from the S-Au bond cleavage was observed. Copyright 2000 John Wiley & Sons, Ltd.

2.
Inorg Chem ; 39(18): 4022-8, 2000 Sep 04.
Article in English | MEDLINE | ID: mdl-11198856

ABSTRACT

A novel amphiphilic Pt complex containing 2,6-bis(1-octadecylbenzimidazol-2-yl)pyridine (L18), [Pt(L18)Cl](PF6), has been synthesized. The complex exhibits concentration-dependent absorption and emission spectra in solution. With increasing the concentration of the Pt complex, we observed a new absorption band centered at 550 nm derived from a metal-metal d sigma* to ligand pi* charge transfer (MMLCT) transition and the corresponding broad emission centered at 650 nm. The Pt complex is surface-active, and the surface pressure-area isotherm reveals three phase transitions. The three phases correspond to one liquid-expanding phase and two solid-condensed phases, respectively, with different intermolecular overlap in the "flat-on" orientation at the air-water interface. Without additives such as fatty acids, the complex forms a stable and reproducible Langmuir-Blodgett (LB) multilayer film above a surface pressure of 15 mN m-1. Strong emission from the LB films, even monolayer, was observed. Comparing the relative emission intensity of the MMLCT band for transferred LB monolayer film with that for cast films, we concluded that Pt-Pt interactions are suppressed in the LB film. Instead, the emission at 600 nm arising from the ligand-ligand pi-pi interacted excited state became dominant. The results would provide the insight into the control of molecular ordering for planar Pt complexes from the viewpoint of characteristic excited states.

3.
Biochim Biophys Acta ; 1384(1): 160-70, 1998 Apr 23.
Article in English | MEDLINE | ID: mdl-9602107

ABSTRACT

The trinuclear centers in Rhus vernicifera laccase and Cucumis sativus ascorbate oxidase have been studied by EPR spectroscopy and magnetic susceptibility measurements over the wide range of 5 K to 300 K. The EPR spectra showed that type II copper receives increasing tetrahedral distortion with raising temperature. Magnetic susceptibilities of laccase showed that both of type I and type II coppers are almost fully paramagnetic since the antiferromagnetic interaction between type III coppers is extremely strong from 5 K to 300 K. On the other hand, the effective magnetic moment of ascorbate oxidase is contributed by ca. 1.7 Cu2+ even below ca. 100 K, since type II Cu is partly in the reduced form. The effective magnetic moment continuously increased with raising temperature because the antiferromagnetic interaction between type III coppers is not as strong as in the case of laccase. The simulation of the SQUID measurement results suggested that the conformational change of the ascorbate oxidase molecule caused the temperature dependence of the antiferromagnetic interaction. The type II Cu EPR signals in laccase and ascorbate oxidase were conspicuously broadened with raising temperature because of the increasing contribution of the triplet state by type III Cu's and/or of the rapid relaxation which finally led to only ca. 30% detection of the type II Cu signals at room temperature. The stepwise binding of azide to the trinuclear center made one of type III Cu's to be EPR detectable. SQUID measurements indicated that only one Cu in the trinuclear center is paramagnetic and other two Cu's are antiferromagnetically coupled for both of the one- and two-azide bound forms. The binding mode of azide to the trinuclear center was discussed based on some models.


Subject(s)
Ascorbate Oxidase/chemistry , Oxidoreductases/chemistry , Electron Spin Resonance Spectroscopy , Laccase , Plants, Toxic , Toxicodendron/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...