Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Nutr ; 154(1): 49-59, 2024 01.
Article in English | MEDLINE | ID: mdl-37984740

ABSTRACT

BACKGROUND: Developing neurons have high thyroid hormone and iron requirements to support their metabolically demanding growth. Early-life iron and thyroid-hormone deficiencies are prevalent and often coexist, and each independently increases risk of permanently impaired neurobehavioral function in children. Early-life dietary iron deficiency reduces thyroid-hormone concentrations and impairs thyroid hormone-responsive gene expression in the neonatal rat brain, but it is unclear whether the effect is cell-intrinsic. OBJECTIVES: This study determined whether neuronal-specific iron deficiency alters thyroid hormone-regulated gene expression in developing neurons. METHODS: Iron deficiency was induced in primary mouse embryonic hippocampal neuron cultures with the iron chelator deferoxamine (DFO) beginning at 3 d in vitro (DIV). At 11DIV and 18DIV, thyroid hormone-regulated gene messenger ribonucleic acid (mRNA)concentrations indexing thyroid hormone homeostasis (Hairless, mu-crystallin, Type II deiodinase, solute carrier family member 1c1, and solute carrier family member 16a2) and neurodevelopment (neurogranin, Parvalbumin, and Krüppel-like factor 9) were quantified. To assess the effect of iron repletion, DFO was removed at 14DIV from a subset of DFO-treated cultures, and gene expression and adenosine 5'-triphosphate (ATP) concentrations were quantified at 21DIV. RESULTS: At 11DIV and 18DIV, neuronal iron deficiency decreased neurogranin, Parvalbumin, and mu-crystallin, and by 18DIV, solute carrier family member 16a2, solute carrier family member 1c1, Type II deiodinase, and Hairless were increased, suggesting cellular sensing of a functionally abnormal thyroid hormone state. Dimensionality reduction with Principal component analysis reveals that thyroid hormone homeostatic genes strongly correlate with and predict iron status. Iron repletion from 14-21DIV did not restore ATP concentration, and Principal component analysis suggests that, after iron repletion, cultures maintain a gene expression signature indicative of previous iron deficiency. CONCLUSIONS: These novel findings suggest there is an intracellular mechanism coordinating cellular iron/thyroid hormone activities. We speculate this is a part of the homeostatic response to acutely match neuronal energy production and growth signaling. However, the adaptation to iron deficiency may cause permanent deficits in thyroid hormone-dependent neurodevelopmental processes even after recovery from iron deficiency.


Subject(s)
Iron Deficiencies , Neurogranin , Humans , Rats , Child , Animals , Mice , Neurogranin/metabolism , Parvalbumins/metabolism , Parvalbumins/pharmacology , mu-Crystallins , Neurons/metabolism , Thyroid Hormones , Hippocampus/metabolism , Iron/metabolism , Adenosine Triphosphate/metabolism , Gene Expression , Iodide Peroxidase/metabolism , Iodide Peroxidase/pharmacology
2.
bioRxiv ; 2023 Jun 17.
Article in English | MEDLINE | ID: mdl-37398002

ABSTRACT

Background: Developing neurons have high thyroid hormone and iron requirements to support their metabolism and growth. Early-life iron and thyroid hormone deficiencies are prevalent, often coexist, and increase the risk of permanently impaired neurobehavioral function in children. Early-life dietary iron deficiency reduces thyroid hormone levels and impairs thyroid hormone-responsive gene expression in the neonatal rat brain. Objective: This study determined whether neuronal-specific iron deficiency alters thyroid hormone-regulated gene expression in developing neurons. Methods: Iron deficiency was induced in primary mouse embryonic hippocampal neuron cultures with the iron chelator deferoxamine (DFO) beginning at 3 days in vitro (DIV). At 11DIV and 18DIV, mRNA levels for thyroid hormone-regulated genes indexing thyroid hormone homeostasis (Hr, Crym, Dio2, Slco1c1, Slc16a2) and neurodevelopment (Nrgn, Pvalb, Klf9) were quantified. To assess the effect of iron repletion, DFO was removed at 14DIV from a subset of DFO-treated cultures and gene expression and ATP levels were quantified at 21DIV. Results: At 11DIV and 18DIV, neuronal iron deficiency decreased Nrgn, Pvalb, and Crym, and by 18DIV, Slc16a2, Slco1c1, Dio2, and Hr were increased; collectively suggesting cellular sensing of a functionally abnormal thyroid hormone state. Dimensionality reduction with Principal Component Analysis (PCA) reveals that thyroid hormone homeostatic genes strongly correlate with and predict iron status (Tfr1 mRNA). Iron repletion from 14-21DIV restored neurodevelopmental genes, but not all thyroid hormone homeostatic genes, and ATP concentrations remained significantly altered. PCA clustering suggests that cultures replete with iron maintain a gene expression signature indicative of previous iron deficiency. Conclusions: These novel findings suggest there is an intracellular mechanism coordinating cellular iron/thyroid hormone activities. We speculate this is a part of homeostatic response to match neuronal energy production and growth signaling for these important metabolic regulators. However, iron deficiency may cause permanent deficits in thyroid hormone-dependent neurodevelopmental processes even after recovery from iron deficiency.

3.
Proc Natl Acad Sci U S A ; 119(22): e2201355119, 2022 05 31.
Article in English | MEDLINE | ID: mdl-35613048

ABSTRACT

Area-specific axonal projections from the mammalian thalamus shape unique cellular organization in target areas in the adult neocortex. How these axons control neurogenesis and early neuronal fate specification is poorly understood. By using mutant mice lacking the majority of thalamocortical axons, we show that these axons are required for the production and specification of the proper number of layer 4 neurons in primary sensory areas by the neonatal stage. Part of these area-specific roles is played by the thalamus-derived molecule, VGF. Our work reveals that extrinsic cues from sensory thalamic projections have an early role in the formation of cortical cytoarchitecture by enhancing the production and specification of layer 4 neurons.


Subject(s)
Axons , Body Patterning , Cerebral Cortex , Neurogenesis , Thalamus , Animals , Axons/physiology , Cerebral Cortex/embryology , Cerebral Cortex/ultrastructure , Mice , Mice, Mutant Strains , Neural Pathways , Neurogenesis/genetics , Neurogenesis/physiology , Neurons/physiology , Thalamus/embryology , Thalamus/ultrastructure
4.
Inhal Toxicol ; 33(6-8): 205-220, 2021.
Article in English | MEDLINE | ID: mdl-34511005

ABSTRACT

Tear gases, or chemical demonstration control agents (DCA), were originally created as weapons that could severely disable or kill enemy troops. Though banned in war, these chemicals are still used in domestic policing. Here we review the available scientific literature on tear gas, summarizing findings from animal and environmental studies as well describing data from new human studies. We find a lack of scientific evidence supporting the safety of tear gas, especially regarding its long-term impacts on human health and the environment. Many of the available studies were published decades ago, and do not parse data by variables such as chemical type and exposure time, nor do they account for the diversity of individuals who are exposed to tear gas in real-life situations. Due to the dearth of scientific research and the misinterpretation of some of the available studies, we conclude that a serious reevaluation of chemical DCA safety and more comprehensive exposure follow-up studies are necessary.


Subject(s)
Environmental Pollutants/toxicity , Tear Gases/toxicity , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...