Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 272(43): 27077-83, 1997 Oct 24.
Article in English | MEDLINE | ID: mdl-9341147

ABSTRACT

It has been known for more than 4 decades that only primate growth hormones are effective in primate species, but it is only with the availability of the 2.8 A structure of the human growth hormone (hGH).hGH-binding protein (hGHBP)2 complex that Souza and co-workers (Souza, S. C., Frick, G. P., Wang, X., Kopchick, J. J., Lobo, R. B., and Goodman, H. M. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 959-963) were able to provide evidence that Arg-43 on the primate receptor is responsible. Here we have examined systematically the interaction between Arg-43 (primate receptor) or Leu-43 (non-primate receptors) and their complementary hormone residues Asp-171 (primate GH) and His-170 (non-primate hormones) in a four-way comparison involving exchanges of histidine and aspartate and exchanges of arginine and leucine. BAF/B03 lines were created and characterized which stably expressed hGH receptor, R43L hGH receptor, rabbit GH receptor, and L43R rabbit GH receptor. These were examined for site 1 affinity, for the ability to bind intact cells, and for proliferative biopotency using hGH, D171H hGH, porcine GH, or H170D porcine GH. We find that the single interaction between Arg-43 and His-170/171 is sufficient to explain virtually all of the primate species specificity, and this is congruent with the crystal structure. Accordingly, for the first time we have been able to engineer a non-primate hormone to bind to and activate the human GH receptor.


Subject(s)
Aspartic Acid , Growth Hormone/chemistry , Growth Hormone/pharmacology , Human Growth Hormone/chemistry , Human Growth Hormone/pharmacology , Receptors, Somatotropin/physiology , Amino Acid Substitution , Animals , Arginine , Binding Sites , Cell Division/drug effects , Cell Line , Growth Hormone/metabolism , Histidine , Human Growth Hormone/metabolism , Humans , Kinetics , Models, Molecular , Mutagenesis, Site-Directed , Primates , Rabbits , Receptors, Somatotropin/metabolism , Swine , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...