Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
J Biomed Opt ; 24(3): 1-9, 2019 03.
Article in English | MEDLINE | ID: mdl-30852855

ABSTRACT

Phase and fluorescence are complementary contrasts that are commonly used in biology. However, the coupling of these two modalities is traditionally limited to high magnification and complex imaging systems. For statistical studies of biological populations, a large field-of-view is required. We describe a 30 mm2 field-of-view dual-modality mesoscope with a 4-µm resolution. The potential of the system to address biological questions is illustrated on white blood cell numeration in whole blood and multiwavelength imaging of the human osteosarcoma (U2-OS) cells.


Subject(s)
Holography/methods , Microscopy, Fluorescence/methods , Algorithms , Cell Line, Tumor , Cytological Techniques/instrumentation , Cytological Techniques/methods , Equipment Design , Holography/instrumentation , Humans , Image Processing, Computer-Assisted , Microscopy, Fluorescence/instrumentation
2.
Sci Rep ; 9(1): 4644, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30874570

ABSTRACT

Heating on the microscale using focused lasers gave rise to recent applications, e.g., in biomedicine, biology and microfluidics, especially using gold nanoparticles as efficient nanoabsorbers of light. However, such an approach naturally leads to nonuniform, Gaussian-like temperature distributions due to the diffusive nature of heat. Here, we report on an experimental means to generate arbitrary distributions of temperature profiles on the micrometric scale (e.g. uniform, linear, parabolic, etc) consisting in illuminating a uniform gold nanoparticle distribution on a planar substrate using spatially contrasted laser beams, shaped using a spatial light modulator (SLM). We explain how to compute the light pattern and the SLM interferogram to achieve the desired temperature distribution, and demonstrate the approach by carrying out temperature measurements using quantitative wavefront sensing.

3.
Biophys J ; 115(3): 565-576, 2018 08 07.
Article in English | MEDLINE | ID: mdl-30029772

ABSTRACT

Single-molecule localization microscopy (SMLM) enables the production of high-resolution images by imaging spatially isolated fluorescent particles. Although challenging, the result of SMLM analysis lists the position of individual molecules, leading to a valuable quantification of the stoichiometry and spatial organization of molecular actors. Both the signal/noise ratio and the density (Dframe), i.e., the number of fluorescent particles per µm2 per frame, have previously been identified as determining factors for reaching a given SMLM precision. Establishing a comprehensive theoretical study relying on these two parameters is therefore of central interest to delineate the achievable limits for accurate SMLM observations. Our study reports that in absence of prior knowledge of the signal intensity α, the density effect on particle localization is more prominent than that anticipated from theoretical studies performed at known α. A first limit appears when, under a low-density hypothesis (i.e., one-Gaussian fitting hypothesis), any fluorescent particle distant by less than ∼600 nm from the particle of interest biases its localization. In fact, all particles should be accounted for, even those dimly fluorescent, to ascertain unbiased localization of any surrounding particles. Moreover, even under a high-density hypothesis (i.e., multi-Gaussian fitting hypothesis), a second limit arises because of the impossible distinction of particles located too closely. An increase in Dframe is thus likely to deteriorate the localization precision, the image reconstruction, and more generally the quantification accuracy. Our study firstly provides a density-signal/noise ratio space diagram for use as a guide in data recording toward reaching an achievable SMLM resolution. Additionally, it leads to the identification of the essential requirements for implementing UNLOC, a parameter-free and fast computing algorithm approaching the Cramér-Rao bound for particles at high-density per frame and without any prior knowledge of their intensity. UNLOC is available as an ImageJ plugin.


Subject(s)
Algorithms , Nanotechnology , Single Molecule Imaging , Signal-To-Noise Ratio
4.
Small ; 14(32): e1801910, 2018 08.
Article in English | MEDLINE | ID: mdl-29995322

ABSTRACT

Laser heating of individual cells in culture recently led to seminal studies in cell poration, fusion, migration, or nanosurgery, although measuring the local temperature increase in such experiments remains a challenge. Here, the laser-induced dynamical control of the heat-shock response is demonstrated at the single cell level, enabled by the use of light-absorbing gold nanoparticles as nanosources of heat and a temperature mapping technique based on quadriwave lateral shearing interferometry (QLSI) measurements. As it is label-free, this approach does not suffer from artifacts inherent to previously reported fluorescence-based temperature-mapping techniques and enables the use of any standard fluorescent labels to monitor in parallel the cell's response.


Subject(s)
Heat-Shock Proteins/metabolism , Light , Single-Cell Analysis , Temperature , Fluorescence , Heat-Shock Response , Transcription Factors/metabolism
5.
Opt Lett ; 42(8): 1616-1619, 2017 Apr 15.
Article in English | MEDLINE | ID: mdl-28409812

ABSTRACT

A technique that provides quantitative and spatially resolved retardance measurement is studied for application to laser-induced modification in transparent materials. The method is based on the measurement of optical path differences between two wavefronts carrying different polarizations, measured by a wavefront sensor placed in the image plane of a microscope. We have applied the technique to the investigation of stress distribution induced by CO2 laser processing of fused silica samples. By comparing experiments to the results of thermomechanical simulations we demonstrate quantitative agreement between measurements and simulations of optical retardance. The technique provides an efficient and simple way to measure retardance of less than 1 nm with a diffraction-limited spatial resolution in transparent samples, and coupled to thermomechanical simulations it gives access to birefringence distribution in the sample.

6.
Opt Lett ; 41(14): 3245-8, 2016 Jul 15.
Article in English | MEDLINE | ID: mdl-27420506

ABSTRACT

We report on a simple and efficient technique based on a wavefront sensor to obtain time-resolved amplitude and phase images of laser-material interactions. The main interest of the technique is to obtain quantitative self-calibrated phase measurements in one shot at the femtosecond time-scale, with high spatial resolution. The technique is used for direct observation and quantitative measurement of the Kerr effect in a fused silica substrate and free electron generation by photo-ionization processes in an optical coating.

7.
Proc Natl Acad Sci U S A ; 113(7): E820-8, 2016 Feb 16.
Article in English | MEDLINE | ID: mdl-26831082

ABSTRACT

Essential cellular functions as diverse as genome maintenance and tissue morphogenesis rely on the dynamic organization of filamentous assemblies. For example, the precise structural organization of DNA filaments has profound consequences on all DNA-mediated processes including gene expression, whereas control over the precise spatial arrangement of cytoskeletal protein filaments is key for mechanical force generation driving animal tissue morphogenesis. Polarized fluorescence is currently used to extract structural organization of fluorescently labeled biological filaments by determining the orientation of fluorescent labels, however with a strong drawback: polarized fluorescence imaging is indeed spatially limited by optical diffraction, and is thus unable to discriminate between the intrinsic orientational mobility of the fluorophore labels and the real structural disorder of the labeled biomolecules. Here, we demonstrate that quantitative single-molecule polarized detection in biological filament assemblies allows not only to correct for the rotational flexibility of the label but also to image orientational order of filaments at the nanoscale using superresolution capabilities. The method is based on polarized direct stochastic optical reconstruction microscopy, using dedicated optical scheme and image analysis to determine both molecular localization and orientation with high precision. We apply this method to double-stranded DNA in vitro and microtubules and actin stress fibers in whole cells.


Subject(s)
DNA/chemistry , Microscopy, Fluorescence/methods , Animals , Fluorescence Polarization , Models, Theoretical , Nanotechnology
8.
Opt Express ; 24(2): 825-41, 2016 Jan 25.
Article in English | MEDLINE | ID: mdl-26832466

ABSTRACT

Rigid endoscopes like graded-index (GRIN) lenses are known tools in biological imaging, but it is conceptually difficult to miniaturize them. In this letter, we demonstrate an ultra-thin rigid endoscope with a diameter of only 125 µm. In addition, we identify a domain where two-photon endoscopic imaging with fs-pulse excitation is possible. We validate the ultra-thin rigid endoscope consisting of a few cm of graded-index multi-mode fiber by using it to acquire optically sectioned two-photon fluorescence endoscopic images of three-dimensional samples.


Subject(s)
Diagnostic Imaging/instrumentation , Endoscopes , Photons , Imaging, Three-Dimensional , Lasers
9.
ACS Omega ; 1(1): 2-8, 2016 Jul 31.
Article in English | MEDLINE | ID: mdl-31457112

ABSTRACT

Solvothermal synthesis, denoting chemical reactions occurring in metastable liquids above their boiling point, normally requires the use of a sealed autoclave under pressure to prevent the solvent from boiling. This work introduces an experimental approach that enables solvothermal synthesis at ambient pressure in an open reaction medium. The approach is based on the use of gold nanoparticles deposited on a glass substrate and acting as photothermal sources. To illustrate the approach, the selected hydrothermal reaction involves the formation of indium hydroxide microcrystals favored at 200 °C in liquid water. In addition to demonstrating the principle, the benefits and the specific characteristics of such an approach are investigated, in particular, the much faster reaction rate, the achievable spatial and time scales, the effect of microscale temperature gradients, the effect of the size of the heated area, and the effect of thermal-induced microscale fluid convection. This technique is general and could be used to spatially control the deposition of virtually any material for which a solvothermal synthesis exists.

10.
Appl Opt ; 54(28): 8375-82, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26479612

ABSTRACT

We investigate phase imaging as a measurement method for laser damage detection and analysis of laser-induced modification of optical materials. Experiments have been conducted with a wavefront sensor based on lateral shearing interferometry associated with a high-magnification optical microscope. The system has been used for the in-line observation of optical thin films and bulk samples, laser irradiated in two different conditions: 500 fs pulses at 343 and 1030 nm, and millisecond to second irradiation with a CO2 laser at 10.6 µm. We investigate the measurement of the laser-induced damage threshold of optical material by detection and phase changes and show that the technique realizes high sensitivity with different optical path measurements lower than 1 nm. Additionally, the quantitative information on the refractive index or surface modification of the samples under test that is provided by the system has been compared to classical metrology instruments used for laser damage or laser ablation characterization (an atomic force microscope, a differential interference contrast microscope, and an optical surface profiler). An accurate in-line measurement of the morphology of laser-ablated sites, from few nanometers to hundred microns in depth, is shown.

11.
Opt Express ; 23(12): 16383-406, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-26193611

ABSTRACT

We describe a new technique based on the use of a high-resolution quadri-wave lateral shearing interferometer to perform quantitative linear retardance and birefringence measurements on biological samples. The system combines quantitative phase images with varying polarization excitation to create retardance images. This technique is compatible with living samples and gives information about the local retardance and structure of their anisotropic components. We applied our approach to collagen fibers leading to a birefringence value of (3.4 ± 0.3) · 10(-3) and to living cells, showing that cytoskeleton can be imaged label-free.

12.
Nat Commun ; 6: 7764, 2015 Jul 27.
Article in English | MEDLINE | ID: mdl-26212705

ABSTRACT

Meeting the nanometre resolution promised by super-resolution microscopy techniques (pointillist: PALM, STORM, scanning: STED) requires stabilizing the sample drifts in real time during the whole acquisition process. Metal nanoparticles are excellent probes to track the lateral drifts as they provide crisp and photostable information. However, achieving nanometre axial super-localization is still a major challenge, as diffraction imposes large depths-of-fields. Here we demonstrate fast full three-dimensional nanometre super-localization of gold nanoparticles through simultaneous intensity and phase imaging with a wavefront-sensing camera based on quadriwave lateral shearing interferometry. We show how to combine the intensity and phase information to provide the key to the third axial dimension. Presently, we demonstrate even in the occurrence of large three-dimensional fluctuations of several microns, unprecedented sub-nanometre localization accuracies down to 0.7 nm in lateral and 2.7 nm in axial directions at 50 frames per second. We demonstrate that nanoscale stabilization greatly enhances the image quality and resolution in direct stochastic optical reconstruction microscopy imaging.

13.
J Biomed Opt ; 20(12): 126009, 2015.
Article in English | MEDLINE | ID: mdl-26720876

ABSTRACT

Single-cell dry mass measurement is used in biology to follow cell cycle, to address effects of drugs, or to investigate cell metabolism. Quantitative phase imaging technique with quadriwave lateral shearing interferometry (QWLSI) allows measuring cell dry mass. The technique is very simple to set up, as it is integrated in a camera-like instrument. It simply plugs onto a standard microscope and uses a white light illumination source. Its working principle is first explained, from image acquisition to automated segmentation algorithm and dry mass quantification. Metrology of the whole process, including its sensitivity, repeatability, reliability, sources of error, over different kinds of samples and under different experimental conditions, is developed. We show that there is no influence of magnification or spatial light coherence on dry mass measurement; effect of defocus is more critical but can be calibrated. As a consequence, QWLSI is a well-suited technique for fast, simple, and reliable cell dry mass study, especially for live cells.


Subject(s)
Interferometry/methods , Single-Cell Analysis/methods , Algorithms , Animals , Artifacts , Automation , COS Cells , Calibration , Chlorocebus aethiops , Equipment Design , Erythrocytes/cytology , Image Processing, Computer-Assisted , Light , Microscopy/methods , Mitosis , Normal Distribution , Optics and Photonics , Reproducibility of Results
14.
Nanoscale ; 6(15): 8984-9, 2014 Aug 07.
Article in English | MEDLINE | ID: mdl-24969322

ABSTRACT

We introduce a deterministic procedure, named TSUNA for Temperature Shaping Using Nanoparticle Assemblies, aimed at generating arbitrary temperature distributions on the microscale. The strategy consists in (i) using an inversion algorithm to determine the exact heat source density necessary to create a desired temperature distribution and (ii) reproducing experimentally this calculated heat source density using smart assemblies of lithographic metal nanoparticles under illumination at their plasmonic resonance wavelength. The feasibility of this approach was demonstrated experimentally by thermal microscopy based on wavefront sensing.

15.
Biophys J ; 106(10): 2096-104, 2014 May 20.
Article in English | MEDLINE | ID: mdl-24853738

ABSTRACT

To investigate the early stages of cell-cell interactions occurring between living biological samples, imaging methods with appropriate spatiotemporal resolution are required. Among the techniques currently available, those based on optical trapping are promising. Methods to image trapped objects, however, in general suffer from a lack of three-dimensional resolution, due to technical constraints. Here, we have developed an original setup comprising two independent modules: holographic optical tweezers, which offer a versatile and precise way to move multiple objects simultaneously but independently, and a confocal microscope that provides fast three-dimensional image acquisition. The optical decoupling of these two modules through the same objective gives users the possibility to easily investigate very early steps in biological interactions. We illustrate the potential of this setup with an analysis of infection by the fungus Drechmeria coniospora of different developmental stages of Caenorhabditis elegans. This has allowed us to identify specific areas on the nematode's surface where fungal spores adhere preferentially. We also quantified this adhesion process for different mutant nematode strains, and thereby derive insights into the host factors that mediate fungal spore adhesion.


Subject(s)
Caenorhabditis elegans/microbiology , Cell Communication , Hypocreales/cytology , Hypocreales/physiology , Microscopy, Confocal/methods , Optical Tweezers , Animals , Caenorhabditis elegans/cytology , Caenorhabditis elegans/growth & development , Lenses , Microscopy, Confocal/instrumentation , Movement , Spores, Fungal/cytology , Spores, Fungal/physiology
16.
Opt Express ; 22(7): 8654-71, 2014 Apr 07.
Article in English | MEDLINE | ID: mdl-24718236

ABSTRACT

We describe the use of spatially incoherent illumination to make quantitative phase imaging of a semi-transparent sample, even out of the paraxial approximation. The image volume electromagnetic field is collected by scanning the image planes with a quadriwave lateral shearing interferometer, while the sample is spatially incoherently illuminated. In comparison to coherent quantitative phase measurements, incoherent illumination enriches the 3D collected spatial frequencies leading to 3D resolution increase (up to a factor 2). The image contrast loss introduced by the incoherent illumination is simulated and used to compensate the measurements. This restores the quantitative value of phase and intensity. Experimental contrast loss compensation and 3D resolution increase is presented using polystyrene and TiO(2) micro-beads. Our approach will be useful to make diffraction tomography reconstruction with a simplified setup.

17.
Opt Express ; 21(18): 20713-21, 2013 Sep 09.
Article in English | MEDLINE | ID: mdl-24103944

ABSTRACT

We report a first demonstration of two-photon endoscopic imaging with a lensless endoscope. The endoscope probe is a double-clad bundle of single-mode fibers; point excitation and scanning is achieved by coherent combining of femtosecond light pulses propagating in the single-mode fibers; and back-scattered two-photon signal is collected through the multi-mode inner cladding. We demonstrate the two-photon endoscope on a test sample of rhodamine 6G crystals.


Subject(s)
Endoscopes , Lenses , Photons , Rhodamines/chemistry , Crystallization , Humans
18.
ACS Nano ; 7(8): 6478-88, 2013 Aug 27.
Article in English | MEDLINE | ID: mdl-23895209

ABSTRACT

The temperature distribution throughout arrays of illuminated metal nanoparticles is investigated numerically and experimentally. The two cases of continuous and femtosecond-pulsed illumination are addressed. In the case of continuous illumination, two distinct regimes are evidenced: a temperature confinement regime, where the temperature increase remains confined at the vicinity of each nanosource of heat, and a temperature delocalization regime, where the temperature is uniform throughout the whole nanoparticle assembly despite the heat sources' nanometric size. We show that the occurrence of one regime or another simply depends on the geometry of the nanoparticle distribution. In particular, we derived (i) simple expressions of dimensionless parameters aimed at predicting the degree of temperature confinement and (ii) analytical expressions aimed at estimating the actual temperature increase at the center of an assembly of nanoparticles under illumination, preventing heavy numerical simulations. All these theoretical results are supported by experimental measurements of the temperature distribution on regular arrays of gold nanoparticles under illumination. In the case of femtosecond-pulsed illumination, we explain the two conditions that must be fulfilled to observe a further enhanced temperature spatial confinement.


Subject(s)
Heating , Nanoparticles/chemistry , Nanotechnology/methods , Photochemistry/methods , Biosensing Techniques , Gold/chemistry , Interferometry/methods , Metal Nanoparticles/chemistry , Micelles , Models, Theoretical , Normal Distribution , Polymers/chemistry , Temperature
19.
Opt Lett ; 38(5): 609-11, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23455239

ABSTRACT

We report a step toward scanning endomicroscopy without distal optics. The focusing of the beam at the distal end of a fiber bundle is achieved by imposing a parabolic phase profile across the exit face with the aid of a spatial light modulator. We achieve video-rate images by galvanometric scanning of the phase tilt at the proximal end. The approach is made possible by the bundle, designed to have very low coupling between cores.


Subject(s)
Endoscopes , Microscopy/instrumentation , Optical Fibers
20.
Opt Lett ; 38(5): 709-11, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23455273

ABSTRACT

We present a method that allows one to measure the real and imaginary parts of the third-order susceptibility in a wide-field coherent anti-Stokes Raman scattering setup using a quadriwave lateral shearing interferometer. This permits the retrieval of the undistorted Raman spectrum and the removal of a nonresonant signal from the surrounding solvent, which otherwise may overwhelm weak resonances.


Subject(s)
Spectrum Analysis, Raman/methods , Vibration , Microscopy , Polystyrenes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...