Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 131(23): 238001, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38134796

ABSTRACT

Although UV photon-induced CO ice desorption is clearly observed in many cold regions of the Universe as well as in the laboratory, the fundamental question of the mechanisms involved at the molecular scale remains debated. In particular, the exact nature of the involved energy transfers in the indirect desorption pathway highlighted in previous experiments is not explained. Using ab initio molecular dynamics simulations, we explore a new indirect desorption mechanism in which a highly vibrationally excited CO (v=40) within an aggregate of 50 CO molecules triggers the desorption of molecules at the surface. The desorption originates first from a mutual attraction between the excited molecule and the surrounding molecule(s), followed by a cascade of energy transfers, ultimately resulting in the desorption of vibrationally cold CO (∼95% in v=0). The theoretical vibrational distribution, along with the kinetic energy one, which peaks around 25 meV for CO with low rotational levels (v=0, J<7), is in excellent agreement with the results obtained from VUV laser induced desorption (157 nm) of CO (v=0, 1) probed using REMPI.

2.
J Phys Chem A ; 123(36): 7683-7692, 2019 Sep 12.
Article in English | MEDLINE | ID: mdl-31418560

ABSTRACT

The dynamics of the Si(3P) + OH(X2Π) → SiO(X1Σ+,v',j') + H(2S) reaction is investigated by means of the quasi-classical trajectory method on the electronic ground state X2A' potential energy surface in the 10-2-1 eV collision energy range. Although the reaction involves the formation of a long-lived intermediate complex, a high probability for back-dissociation to the reactants is found because of inefficient intravibrational redistribution of energy among the complex modes. At low collision energies, the reactive events are governed by a dynamics with mixed direct/indirect features. As the collision energy increases, the intermediate complex lifetime increases and final state distributions are found to be in reasonable agreement with statistical predictions obtained using the mean potential phase space theory, thus highlighting the indirect character of the process. These rich and puzzling dynamical features are in line with what has been previously observed for the S(3P) + OH(X2Π) reaction.

3.
J Phys Chem A ; 121(8): 1675-1685, 2017 Mar 02.
Article in English | MEDLINE | ID: mdl-28171718

ABSTRACT

The dynamics of the Si(3P) + OH(X2Π) → SiO(X1Σ+) + H(2S) reaction is investigated by means of the time-dependent wave packet (TDWP) approach using an ab initio potential energy surface recently developed by Dayou et al. ( J. Chem. Phys. 2013 , 139 , 204305 ) for the ground X2A' electronic state. Total reaction probabilities have been calculated for the first 15 rotational states j = 0-14 of OH(v=0,j) at a total angular momentum J = 0 up to a collision energy of 1 eV. Integral cross sections and state-selected rate constants for the temperature range 10-500 K were obtained within the J-shifting approximation. The reaction probabilities display highly oscillatory structures indicating the contribution of long-lived quasibound states supported by the deep SiOH/HSiO wells. The cross sections behave with collision energies as expected for a barrierless reaction and are slightly sensitive to the initial rotational excitation of OH. The thermal rate constants show a marked temperature dependence below 200 K with a maximum value around 15 K. The TDWP results globally agree with the results of earlier quasi-classical trajectory (QCT) calculations carried out by Rivero-Santamaria et al. ( Chem. Phys. Lett. 2014 , 610-611 , 335 - 340 ) with the same potential energy surface. In particular, the thermal rate constants display a similar temperature dependence, with TDWP values smaller than the QCT ones over the whole temperature range.

4.
J Phys Chem A ; 120(51): 10141-10149, 2016 Dec 29.
Article in English | MEDLINE | ID: mdl-27983844

ABSTRACT

Marine aerosols represent the most important aerosol fraction in the Earth atmosphere. Field studies have revealed that fatty acids form an organic film at the surface of sea salt particles, altering the properties of the aerosol. By means of classical molecular dynamics simulation, the surface organization of palmitic acid (PA) on a salt surface, NaCl, has been investigated at two different temperatures, 235 and 300 K, and with relative humidity varying from 0 to 40%. Calculations show that water promotes the formation of well-ordered close-packed PA islands. As a result, some area of the salt may be covered by water only or by PA molecules supported by water. Depending on the relative humidity, the hydrophilic/hydrophobic character of the sea salt surface varies. This heterogeneous coating gives rise locally to very different surface properties and hence may affect the transfer of gas phase species to the salt and their reactivity.

5.
J Chem Phys ; 142(14): 144310, 2015 Apr 14.
Article in English | MEDLINE | ID: mdl-25877581

ABSTRACT

The chlorine/water interface is of crucial importance in the context of atmospheric chemistry. Modeling the structure and dynamics at this interface requires an accurate description of the interaction potential energy surfaces. We propose here an analytical intermolecular potential that reproduces the interaction between the Cl2 molecule and a water molecule. Our functional form is fitted to a set of high level ab initio data using the coupled-cluster single double (triple)/aug-cc-p-VTZ level of electronic structure theory for the Cl2 - H2O complex. The potential fitted to reproduce the three minima structures of 1:1 complex is validated by the comparison of ab initio results of Cl2 interacting with an increasing number of water molecules. Finally, the model potential is used to study the physisorption of Cl2 on a perfectly ordered hexagonal ice slab. The calculated adsorption energy, in the range 0.27 eV, shows a good agreement with previous experimental results.

6.
J Chem Phys ; 139(20): 204305, 2013 Nov 28.
Article in English | MEDLINE | ID: mdl-24289352

ABSTRACT

We report the first global potential energy surface (PES) for the X(2)A' ground electronic state of the Si((3)P) + OH(X(2)Π) → SiO(X(1)Σg(+)) + H((2)S) reaction. The PES is based on a large number of ab initio energies obtained from multireference configuration interaction calculations plus Davidson correction (MRCI+Q) using basis sets of quadruple zeta quality. Corrections were applied to the ab initio energies in the reactant channel allowing a proper description of long-range interactions between Si((3)P) and OH(X(2)Π). An analytical representation of the global PES has been developed by means of the reproducing kernel Hilbert space method. The reaction is found barrierless. Two minima, corresponding to the SiOH and HSiO isomers, and six saddle points, among which the isomerization transition state, have been characterized on the PES. The vibrational spectra of the SiOH/HSiO radicals have been computed from second-order perturbation theory and quantum dynamics methods. The structural, energetic, and spectroscopic properties of the two isomers are in good agreement with experimental data and previous high quality calculations.

SELECTION OF CITATIONS
SEARCH DETAIL
...