Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 21(19): 8495-8502, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34596406

ABSTRACT

Understanding the kinetic selectivity of carbon nanotube growth at the scale of individual nanotubes is essential for the development of high chiral selectivity growth methods. Here we demonstrate that homodyne polarization microscopy can be used for high-throughput imaging of long individual carbon nanotubes under real growth conditions (at ambient pressure, on a substrate) and with subsecond time resolution. Our in situ observations on hundreds of individual nanotubes reveal that about half of them grow at a constant rate all along their lifetime while the other half exhibits stochastic changes in growth rates and/or switches between growth, pause, and shrinkage. Statistical analysis shows that the growth rate of a given nanotube essentially varies between two values, with a similar average ratio (∼1.7) regardless of whether the rate change is accompanied by a change in chirality. These switches indicate that the nanotube edge or the catalyst nanoparticle fluctuates between different configurations during growth.


Subject(s)
Nanotubes, Carbon , Catalysis , Kinetics , Microscopy, Polarization , Nanotechnology
2.
Phys Rev Lett ; 118(23): 233602, 2017 Jun 09.
Article in English | MEDLINE | ID: mdl-28644642

ABSTRACT

We investigate the temperature dependence of photon coherence properties through two-photon interference (TPI) measurements from a single quantum dot (QD) under resonant excitation. We show that the loss of indistinguishability is related only to the electron-phonon coupling and is not affected by spectral diffusion. Through these measurements and a complementary microscopic theory, we identify two independent separate decoherence processes, both of which are associated with phonons. Below 10 K, we find that the relaxation of the vibrational lattice is the dominant contribution to the loss of TPI visibility. This process is non-Markovian in nature and corresponds to real phonon transitions resulting in a broad phonon sideband in the QD emission spectra. Above 10 K, virtual phonon transitions to higher lying excited states in the QD become the dominant dephasing mechanism, this leads to a broadening of the zero phonon line, and a corresponding rapid decay in the visibility. The microscopic theory we develop provides analytic expressions for the dephasing rates for both virtual phonon scattering and non-Markovian lattice relaxation.

3.
Phys Rev Lett ; 111(2): 026403, 2013 Jul 12.
Article in English | MEDLINE | ID: mdl-23889424

ABSTRACT

We report on coherent emission of the neutral exciton state in a single semiconductor self-assembled InAs/GaAs quantum dot embedded in a one-dimensional waveguide, under resonant picosecond pulsed excitation. Direct measurements of the radiative lifetime and coherence time are performed as a function of excitation power and temperature. The characteristic damping of Rabi oscillations observed is attributed to an excitation-induced dephasing due to a resonant coupling between the emitter and the acoustic phonon bath of the matrix. Other sources responsible for the decrease of the coherence time have been evidenced, in particular an enhancement of the radiative recombination rate due to the resonant strong coupling between the dot and the one-dimensional optical mode. As a consequence, the emission couples very efficiently into the waveguide mode, leading to an additional relaxation term of the excited-state population.

SELECTION OF CITATIONS
SEARCH DETAIL
...