Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 14(1)2022 01 08.
Article in English | MEDLINE | ID: mdl-35062314

ABSTRACT

Photodynamic inactivation (PDI) employs a photosensitizer, light, and oxygen to create a local burst of reactive oxygen species (ROS) that can inactivate microorganisms. The botanical extract PhytoQuinTM is a powerful photosensitizer with antimicrobial properties. We previously demonstrated that photoactivated PhytoQuin also has antiviral properties against herpes simplex viruses and adenoviruses in a dose-dependent manner across a broad range of sub-cytotoxic concentrations. Here, we report that human coronaviruses (HCoVs) are also susceptible to photodynamic inactivation. Photoactivated-PhytoQuin inhibited the replication of the alphacoronavirus HCoV-229E and the betacoronavirus HCoV-OC43 in cultured cells across a range of sub-cytotoxic doses. This antiviral effect was light-dependent, as we observed minimal antiviral effect of PhytoQuin in the absence of photoactivation. Using RNase protection assays, we observed that PDI disrupted HCoV particle integrity allowing for the digestion of viral RNA by exogenous ribonucleases. Using lentiviruses pseudotyped with the SARS-CoV-2 Spike (S) protein, we once again observed a strong, light-dependent antiviral effect of PhytoQuin, which prevented S-mediated entry into human cells. We also observed that PhytoQuin PDI altered S protein electrophoretic mobility. The PhytoQuin constituent emodin displayed equivalent light-dependent antiviral activity to PhytoQuin in matched-dose experiments, indicating that it plays a central role in PhytoQuin PDI against CoVs. Together, these findings demonstrate that HCoV lipid envelopes and proteins are damaged by PhytoQuin PDI and expands the list of susceptible viruses.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus/drug effects , Photosensitizing Agents/pharmacology , Virus Inactivation/drug effects , Animals , Antiviral Agents/radiation effects , Cell Line , Cell Survival/drug effects , Cricetinae , Emodin/pharmacology , Emodin/radiation effects , Humans , Light , Photosensitizing Agents/radiation effects , Plant Extracts/pharmacology , Plant Extracts/radiation effects , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/drug effects , Virion/drug effects
2.
Photochem Photobiol ; 96(2): 349-357, 2020 03.
Article in English | MEDLINE | ID: mdl-31730278

ABSTRACT

Ru(II) complexes were synthesized with π-expanding (phenyl, fluorenyl, phenanthrenyl, naphthalen-1-yl, naphthalene-2-yl, anthryl and pyrenyl groups) attached at a 1H-imidazo[4,5-f][1,10]phenanthroline ligand and 4,4'-dimethyl-2,2'-bipyridine (4,4'-dmb) coligands. These Ru(II) complexes were characterized by 1D and 2D NMR, and mass spectroscopy, and studied for visible light and dark toxicity to human malignant melanoma SK-MEL-28 cells. In the SK-MEL-28 cells, the Ru(II) complexes are highly phototoxic (EC50  = 0.2-0.5 µm) and have low dark toxicity (EC50  = 58-230 µm). The highest phototherapeutic index (PI) of the series was found with the Ru(II) complex bearing the 2-(pyren-1-yl)-1H-imidazo[4,5-f][1,10]phenanthroline ligand. This high PI is in part attributed to the π-rich character added by the pyrenyl group, and a possible low-lying and longer-lived 3 IL state due to equilibration with the 3 MLCT state. While this pyrenyl Ru(II) complex possessed a relatively high quantum yield for singlet oxygen formation (Φ∆  = 0.84), contributions from type-I processes (oxygen radicals and radical ions) are competitive with the type-II (1 O2 ) process based on effects of added sodium azide and solvent deuteration.


Subject(s)
Coordination Complexes/chemical synthesis , Coordination Complexes/pharmacology , Melanoma/drug therapy , Phenanthrolines/chemistry , Photochemotherapy/methods , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/pharmacology , Ruthenium Compounds/chemical synthesis , Ruthenium Compounds/pharmacology , Skin Neoplasms/drug therapy , Cell Line, Tumor , Coordination Complexes/chemistry , Humans , Ligands , Melanoma/pathology , Photosensitizing Agents/chemistry , Ruthenium Compounds/chemistry , Skin Neoplasms/pathology
3.
Inorg Chem ; 58(16): 10778-10790, 2019 Aug 19.
Article in English | MEDLINE | ID: mdl-31386351

ABSTRACT

A new family of cyclometalated ruthenium(II) complexes [Ru(N^N)2(C^N)]+ derived from the π-extended benzo[h]imidazo[4,5-f]quinolone ligand appended with thienyl groups (n = 1-4, compounds 1-4) was prepared and its members were characterized for their chemical, photophysical, and photobiological properties. The lipophilicities of 1-4, determined as octanol-water partition coefficients (log Po/w), were positive and increased with the number of thienyl units. The absorption and emission bands of the C^N compounds were red-shifted by up to 200 nm relative to the analogous Ru(II) diimine systems. All of the complexes exhibited dual emission with the intraligand fluorescence (1IL, C^N-based) shifting to lower energies with increasing n and the metal-to-ligand charge transfer phosphorescence (3MLCT, N^N-based) remaining unchanged. Compounds 1-3 exhibited excited state absorption (ESA) profiles consistent with lowest-lying 3MLCT states when probed by nanosecond transient absorption (TA) spectroscopy with 532 nm excitation and had contributions from 1IL(C^N) states with 355 nm excitation. These assignments were supported by the lifetimes observed (<10 ns for the 1IL states and around 20 ns for the 3MLCT states) as well as a noticeable ESA for 3 with 355 nm excitation that did not occur with 532 nm excitation. Compound 4 was the only member of the family with two 3MLCT emissive lifetimes (15, 110 ns), and the TA spectra collected with both 355 and 532 nm excitation was assigned to the 3IL state, which was corroborated by its 4-6 µs lifetime. The ESA for 4 had a rise time of approximately 10 ns and an initial decay of 110 ns, which suggests a possible 3MLCT-3IL excited state equilibrium that results in delayed emission from the 3MLCT state. Compound 4 was nontoxic toward human skin melanoma cells (SKMEL28) in the dark (EC50 = >300 µM); 1-3 were cytotoxic and yielded EC50 values between 1 and 20 µM. The photocytotoxicites with visible light ranged from 87 nM with a phototherapeutic index (PI) of 13 for 1 to approximately 1 µM (PI = >267) for 4. With red light, EC50 values varied from 270 nM (PI = 21) for 3 to 12 µM for 4 (PI = >25). The larger PIs for 4, especially with visible light, were attributed to the much lower dark cytotoxicity for this compound. Because the dark cytotoxicity contributes substantially to the observed photocytotoxicity for 1-3, it was not possible to assess whether the 3IL state of 4 led to a much more potent phototoxic mechanism in the absence of dark toxicity. There was no stark contrast in cellular uptake and accumulation by laser scanning confocal and differential interference contrast microscopy to explain the large differences in dark toxicities between 1-3 and 4. Nevertheless, the study highlights a new family of Ru(II) C^N complexes where π-conjugation beyond a certain point results in low dark cytotoxicity with high photocytotoxicity, opposing the notion that cyclometalated Ru(II) systems are too toxic to be phototherapeutic agents.


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Photosensitizing Agents/pharmacology , Quinolones/pharmacology , Ruthenium/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Drug Screening Assays, Antitumor , Humans , Ligands , Light , Molecular Structure , Photochemical Processes , Photochemotherapy , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/chemistry , Quinolones/chemistry , Ruthenium/chemistry
4.
Viruses ; 10(10)2018 09 29.
Article in English | MEDLINE | ID: mdl-30274257

ABSTRACT

Herpes simplex virus (HSV) infections can be treated with direct acting antivirals like acyclovir and foscarnet, but long-term use can lead to drug resistance, which motivates research into broadly-acting antivirals that can provide a greater genetic barrier to resistance. Photodynamic inactivation (PDI) employs a photosensitizer, light, and oxygen to create a local burst of reactive oxygen species that inactivate microorganisms. The botanical plant extract OrthoquinTM is a powerful photosensitizer with antimicrobial properties. Here we report that Orthoquin also has antiviral properties. Photoactivated Orthoquin inhibited herpes simplex virus type 1 (HSV-1) and herpes simplex virus type 2 (HSV-2) infection of target cells in a dose-dependent manner across a broad range of sub-cytotoxic concentrations. HSV inactivation required direct contact between Orthoquin and the inoculum, whereas pre-treatment of target cells had no effect. Orthoquin did not cause appreciable damage to viral capsids or premature release of viral genomes, as measured by qPCR for the HSV-1 genome. By contrast, immunoblotting for HSV-1 antigens in purified virion preparations suggested that higher doses of Orthoquin had a physical impact on certain HSV-1 proteins that altered protein mobility or antigen detection. Orthoquin PDI also inhibited the non-enveloped adenovirus (AdV) in a dose-dependent manner, whereas Orthoquin-mediated inhibition of the enveloped vesicular stomatitis virus (VSV) was light-independent. Together, these findings suggest that the broad antiviral effects of Orthoquin-mediated PDI may stem from damage to viral attachment proteins.


Subject(s)
Antiviral Agents/therapeutic use , Herpes Simplex/drug therapy , Herpesvirus 1, Human/drug effects , Herpesvirus 2, Human/drug effects , Photochemotherapy , Photosensitizing Agents/therapeutic use , Animals , Antiviral Agents/pharmacology , Chlorocebus aethiops , Fallopia japonica/chemistry , HEK293 Cells , HeLa Cells , Herpes Simplex/virology , Humans , Photosensitizing Agents/pharmacology , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Roots/chemistry , Vero Cells
5.
Inorg Chem ; 57(13): 7694-7712, 2018 Jul 02.
Article in English | MEDLINE | ID: mdl-29927243

ABSTRACT

The photophysical and photobiological properties of a new class of cyclometalated ruthenium(II) compounds incorporating π-extended benzo[ h]imidazo[4,5- f]quinoline (IBQ) cyclometalating ligands (C^N) bearing thienyl rings ( n = 1-4, compounds 1-4) were investigated. Their octanol-water partition coefficients (log Po/w) were positive and increased with n. Their absorption and emission energies were red-shifted substantially compared to the analogous Ru(II) diimine (N^N) complexes. They displayed C^N-based intraligand (IL) fluorescence and triplet excited-state absorption that shifted to longer wavelengths with increasing n and N^N-based metal-to-ligand charge transfer (MLCT) phosphorescence that was independent of n. Their photoluminescence lifetimes (τem) ranged from 4-10 ns for 1IL states and 12-18 ns for 3MLCT states. Transient absorption lifetimes (τTA) were 5-8 µs with 355 nm excitation, ascribed to 3IL states that became inaccessible for 1-3 with 532 nm excitation (1-3, τTA = 16-17 ns); the 3IL of 4 only was accessible by lower energy excitation, τTA = 3.8 µs. Complex 4 was nontoxic (EC50 > 300 µM) to SK-MEL-28 melanoma cells and CCD1064-Sk normal skin fibroblasts in the dark, while 3 was selectively cytotoxic to melanoma (EC50= 5.1 µM) only. Compounds 1 and 2 were selective for melanoma cells in the dark, with submicromolar potencies (EC50 = 350-500 nM) and selectivity factors (SFs) around 50. The photocytotoxicities of compounds 1-4 toward melanoma cells were similar, but only compounds 3 and 4 displayed significant phototherapeutic indices (PIs; 3, 43; 4, >1100). The larger cytotoxicities for compounds 1 and 2 were attributed to increased cellular uptake and nuclear accumulation, and possibly related to the DNA-aggregating properties of all four compounds as demonstrated by cell-free gel mobility-shift assays. Together, these results demonstrate a new class of thiophene-containing Ru(II) cyclometalated compounds that contain both highly selective chemotherapeutic agents and extremely potent photocytotoxic agents.


Subject(s)
Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Ruthenium/chemistry , Thiophenes/chemistry , Cell Line, Tumor , Humans , Hydrophobic and Hydrophilic Interactions , Singlet Oxygen/metabolism
6.
J Nat Prod ; 74(11): 2420-4, 2011 Nov 28.
Article in English | MEDLINE | ID: mdl-22050382

ABSTRACT

Streptomyces venezuelae ISP5230 is recognized for the production of chloramphenicol and the jadomycin family of natural products. The jadomycins are angucycline natural products containing a unique oxazolone ring incorporating an amino acid present in the minimal culture media. Substitution of different amino acids results in products of varying biological activity. Analysis of cultures of S. venezuelae ISP5230 incubated with l- and d-norvaline and l- and d-norleucine indicated that only the d-configured amino acids were incorporated into the natural products. Subsequently, jadomycin DNV and jadomycin DNL were isolated and characterized (titers 4 and 9 mg L(-1), respectively). The compounds were evaluated in the National Cancer Institute cell line cancer growth inhibition and cytotoxicity screens, for antimicrobial activity against selected Gram-positive and Gram-negative bacteria, and as DNA-cleavage agents in vitro.


Subject(s)
Norleucine/metabolism , Streptomyces/chemistry , Valine/analogs & derivatives , Amino Acid Sequence , Amino Acids/chemistry , Amino Acids/metabolism , Chloramphenicol/metabolism , DNA/drug effects , Drug Screening Assays, Antitumor , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Isoquinolines/chemistry , Isoquinolines/metabolism , Microbial Sensitivity Tests , Molecular Structure , Norleucine/chemistry , Oxazolone/chemistry , Streptomyces/metabolism , Valine/chemistry , Valine/metabolism
7.
Bioorg Med Chem ; 19(11): 3357-60, 2011 Jun 01.
Article in English | MEDLINE | ID: mdl-21565515

ABSTRACT

The natural product jadomycin B, isolated from Streptomyces venezeulae ISP5230, has been found to cleave DNA in the presence of Cu(II) ions without the requirement for an external reducing agent. The efficiency of DNA cleavage was probed using supercoiled plasmid DNA in buffered solution as a model environment. EC50 and t(½) values for cleavage were 1.7 µM and 0.75 h, respectively, and varied ± 5% with the particular batch of plasmid and jadomycin employed. While UV-vis spectroscopy indicates that the cleavage event does not involve direct binding of jadomycin B to DNA, a stoichiometric Cu(II) preference for optimum cleavage suggests a weak binding interaction between jadomycin B and Cu(II) in the presence of DNA. The Cu(II)-mediated cleavage is greatly enhanced by UV light, which implicates the jadomycin B radical cation and Cu(I) as potential intermediates in DNA cleavage. Evidence in favor of this hypothesis was derived from a mechanistic assay which showed reduced cleavage as a function of added catalase and EDTA, scavengers of H2O2 and Cu(II), respectively. Thus, jadomycin B may serve as a source of electrons for Cu(II) reduction, producing Cu(I) which reacts with H2O2 to form hydroxyl radicals that cause DNA strand scission. In addition, scavengers of hydroxyl radicals and superoxide also display inhibitory effects, underscoring the ability of jadomycin B to produce a powerful arsenal of deleterious oxygen species when copper is present.


Subject(s)
Copper/chemistry , Deoxyribonucleases/metabolism , DNA/metabolism , DNA Cleavage , Isoquinolines/chemistry , Isoquinolines/pharmacology , Spectrophotometry, Ultraviolet , Streptomyces/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...