Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 34(29): 8639-8651, 2018 07 24.
Article in English | MEDLINE | ID: mdl-29936841

ABSTRACT

Amphiphilic cyclodextrins (aCDs) are an intriguing class of carrier systems which, recently, have been proposed to deliver porphyrinoids and anticancer drugs or combined dose of both for dual therapeutic applications. The design of nanoassemblies based on aCD and photosensitizers (PSs) aims to preserve the photodynamic therapy (PDT) efficacy of PS, reducing the tendency of PS to self-aggregate, without affecting the quantum yield of singlet oxygen (1O2) production, and, not less importantly, minimizing dark toxicity and reducing photosensitization effects. With this idea in mind, in this paper, we focus on nanoassemblies between a non-ionic aCD (SC6OH) and halo-alkyl tailored iodinated boron-dipyrromethenes (BODIPY) dye, a class of molecules which recently have been successfully proposed as a stimulating alternative to porphyrinoids for their high photodynamic efficacy. Nanoassemblies of BODIPY/aCD (BL01I@SC6OH) were prepared in different aqueous media by evaporation of mixed organic film of aCD and BODIPY, hydration, and sonication. The nanostructures were characterized, measuring their hydrodynamic diameter and ξ-potential and also evaluating their time-stability in biological relevant media. Taking advantage of emissive properties of the not-iodinated BODIPY analogue (BL01), nanoassemblies based on aCD and BL01 were investigated as model system to get insight on entanglement of BODIPY in the amphiphile in aqueous dispersion, pointing out that BODIPY is well-entrapped in monomeric form (τ ≅ 6.5 ns) within the colloidal carriers. Also morphology and fluorescence emission properties were elucidated after casting the solution on glass. BL01@SC6OH is easily detectable in cytoplasm of HCT116 cell lines, evidencing the remarkable intracellular penetration of this nanoassembly similar to free BODIPY. On the same cell lines, the photodynamically active assembly BL01I/aCD shows toxicity upon irradiation. Despite the fact that free BL01I is more PDT active than its assembly, aCD can modulate the cell uptake of BODIPY, pointing out the potential of this system for in vivo PDT application.

2.
Chem Sci ; 8(2): 961-967, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-28451233

ABSTRACT

Dilute aqueous solutions of anionic meso-4-sulfonatophenyl-porphyrin (TPPS) extract zinc(ii) ions from glass or quartz surfaces at room temperature and efficiently form the corresponding metal complex (ZnTPPS). The partial or complete formation of ZnTPPS has been probed by UV/Vis spectroscopy and both static and time-resolved fluorescence. The source of zinc(ii) ions has been clearly identified through inductively coupled plasma optical emission spectrometry. The presence of increasing amounts of ZnTPPS slows down the rate of TPPS J-aggregate formation in acid solution. This influences the nucleation step and has a profound impact on the onset of chirality in these species. This evidence indicates the important role of this adventitious metal ion in the interpretation of various spectroscopic and kinetic data for the self-assembly of the TPPS porphyrin and provides some insights into controversial findings on their chirality. The use of this metal derivative as the starting compound for in situ formation of monomeric TPPS is suggested.

3.
Chem Commun (Camb) ; 52(77): 11520-11523, 2016 Sep 20.
Article in English | MEDLINE | ID: mdl-27709218

ABSTRACT

Kinetics of the growth of TPPS4 porphyrin J-aggregates slow down in the order H2SO4 > HCl > HBr > HNO3 > HClO4, in agreement with the Hofmeister series. The rate constants and the extent of chirality correlate with the structure-making or breaking abilities of the different anions with respect to the hydrogen bonding network of the solvent.

4.
Nat Chem ; 4(3): 201-7, 2012 Feb 12.
Article in English | MEDLINE | ID: mdl-22354434

ABSTRACT

Many essential biological molecules exist only in one of two possible mirror-image structures, either because they possess a chiral unit or through their structure (helices, for example, are intrinsically chiral), but so far the origin of this homochirality has not been unraveled. Here we demonstrate that the handedness of helical supramolecular aggregates formed by achiral molecules can be directed by applying rotational, gravitational and orienting forces during the self-assembly process. In this system, supramolecular chirality is determined by the relative directions of rotation and magnetically tuned effective gravity, but the magnetic orientation of the aggregates is also essential. Applying these external forces only during the nucleation step of the aggregation is sufficient to achieve chiral selection. This result shows that an almost instantaneous chiral perturbation can be transferred and amplified in growing supramolecular self-assemblies, and provides evidence that a falsely chiral influence is able to induce absolute enantioselection.


Subject(s)
Macromolecular Substances/chemistry , Magnetic Phenomena , Models, Chemical , Models, Molecular , Porphyrins/chemistry , Rotation , Stereoisomerism , Thermodynamics
5.
Inorg Chem ; 39(21): 4749-55, 2000 Oct 16.
Article in English | MEDLINE | ID: mdl-11196950

ABSTRACT

The rates of chloride for triphenylphosphine substitution have been measured in dichloromethane for a series of cyclometalated [Pt(N-N-C)Cl] complexes containing a number of terdentate N-N-C anionic ligands, derived from deprotonated alkyl-, phenyl-, and benzyl-6-substituted 2,2'-bipyridines. These rates have been compared with those of the corresponding [Pt(N-N)(C)Cl] (N-N = 2,2'-bipyridine; C = CH3 or C6H5) complexes having the same set of donor atoms but less constrained arrangements of the ligands. The reactions of the cyclometalated compounds occur as a single-stage conversion from the substrate to the ionic pair [Pt(N-N-C)(PPh3)]Cl products. There is no evidence by 1H and 31P(1H) NMR spectroscopy for the formation of other Pt(II) species or of concurrent ring-opening processes. In contrast, in the monoalkyl- or monoaryl-2,2'-bipyridine complexes, chloride substitution is followed by subsequent slower processes which involve the detachment of one arm of the chelated 2,2'-bipyridine, fast cis to trans isomerization of the cis-[Pt(PPh3)2(eta 1-bipy)(R)]+ transient intermediate, and, eventually, the release of free bipy, yielding trans-[Pt(PPh3)2(R)Cl] (R = Me or Ph). All reactions are first-order with respect to complex and phosphine concentration, obeying the simple rate law kobsd = k2[PPh3]. The values of the second-order rate constant k2 do not seem particularly sensitive to the nature of the bonded organic moiety (alkyl or aryl), to its structure (cyclometalated or not), to the size of the ring, or to the number of alkyl substituents on it. The effects are those foreseen on the basis of an associative mode of activation. The only exception to this pattern of behavior is constituted by the complex [Pt(bipy phi-H)Cl] (bipy phi = 6-phenyl-2,2'-bipyridine), which features a significant rate enhancement with respect to the analogue [Pt(bipy)(Ph)Cl] complex. The results of this work, together with those of a previous paper, suggest that there is not a specific role of cyclometalation in controlling the reactivity, unless an in-plane aryl ring becomes part of the pi-acceptor system of the chelated 2,2-bipyridine, behaving as a cyclometalated analogue of the nitrogen terdentate 2,2':6',2"-terpyridine.

6.
7.
J Inorg Biochem ; 39(2): 149-59, 1990 Jun.
Article in English | MEDLINE | ID: mdl-2166134

ABSTRACT

Spectroscopic methods have been employed in order to understand the molecular basis of the decrease in enzymatic activity of the antiinflammatory enzyme copper-zinc superoxide dismutase (SOD) following the covalent binding of polyethyleneglycol (PEG) chains to the protein amino-groups. The PEG modification is a general method recently proposed to improve the therapeutic index of enzymes. 1H NMR spectra on the cobalt substituted PEG-modified SOD, Cu2Co2-PEG-SOD, have been recorded. The signals are quite broad with respect to the unmodified enzyme. This has been interpreted on the basis of the effect of molecular weight on the linewidth. The analysis has shown that the histidine hydrogens involved in metal binding at the enzyme active site are the same in both native and PEG-modified SOD. Similarly, circular dichroism and absorption spectra indicate that the overall conformation of the metal clusters is not perturbed upon modification. On the other hand, azide titration shows that the affinity constant of N-3 for SOD is largely reduced upon PEG modification (K = 154 M-1 and 75 M-1 for the native and modified SOD, respectively). These results indicate that the decrease in enzymatic activity upon surface modification with PEG is not caused by a perturbation of the active site geometry, but to a decrease in the channeling of the O2- ion towards the enzyme active site.


Subject(s)
Polyethylene Glycols , Superoxide Dismutase , Circular Dichroism , Magnetic Resonance Spectroscopy/methods , Polyethylene Glycols/pharmacology , Protons , Spectrum Analysis/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...