Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 14810, 2022 08 31.
Article in English | MEDLINE | ID: mdl-36045215

ABSTRACT

A longstanding question in evolutionary biology is how natural selection and environmental pressures shape the mitochondrial genomic architectures of organisms. Mitochondria play a pivotal role in cellular respiration and aerobic metabolism, making their genomes functionally highly constrained. Evaluating selective pressures on mitochondrial genes can provide functional and ecological insights into the evolution of organisms. Collembola (springtails) are an ancient hexapod group that includes the oldest terrestrial arthropods in the fossil record, and that are closely associated with soil environments. Of interest is the diversity of habitat stratification preferences (life forms) exhibited by different species within the group. To understand whether signals of positive selection are linked to the evolution of life forms, we analysed 32 published Collembola mitogenomes in a phylomitogenomic framework. We found no evidence that signatures of selection are correlated with the evolution of novel life forms, but rather that mutations have accumulated as a function of time. Our results highlight the importance of nuclear-mitochondrial interactions in the evolution of collembolan life forms and that mitochondrial genomic data should be interpreted with caution, as complex selection signals may complicate evolutionary inferences.


Subject(s)
Arthropods , Genome, Mitochondrial , Animals , Arthropods/genetics , Arthropods/metabolism , Evolution, Molecular , Fossils , Genes, Mitochondrial , Insecta/genetics , Phylogeny
2.
Genes (Basel) ; 12(3)2021 03 04.
Article in English | MEDLINE | ID: mdl-33806647

ABSTRACT

During austral winter, the southern and eastern coastlines of South Africa witness one of the largest animal migrations on the planet, the KwaZulu-Natal sardine run. Hundreds of millions of temperate sardines, Sardinops sagax, form large shoals that migrate north-east towards the subtropical Indian Ocean. Recent studies have highlighted the role that genetic and environmental factors play in sardine run formation. In the present study, we used massively parallel sequencing to assemble and annotate the first reference transcriptome from the liver cells of South African sardines, and to investigate the functional content and transcriptomic diversity. A total of 1,310,530 transcripts with an N50 of 1578 bp were assembled de novo. Several genes and core biochemical pathways that modulate energy production, energy storage, digestion, secretory processes, immune responses, signaling, regulatory processes, and detoxification were identified. The functional content of the liver transcriptome from six individuals that participated in the 2019 sardine run demonstrated heterogeneous levels of variation. Data presented in the current study provide new insights into the complex function of the liver transcriptome in South African sardines.


Subject(s)
Fish Proteins/genetics , Fishes/genetics , Gene Expression Profiling/veterinary , Liver/chemistry , Animal Migration , Animals , Gene Expression Regulation , High-Throughput Nucleotide Sequencing , Molecular Sequence Annotation , Sequence Analysis, RNA , South Africa
3.
Mar Genomics ; 58: 100847, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33637426

ABSTRACT

Environmental gradients between marine biogeographical provinces separate distinct faunal communities. However, the absence of absolute dispersal barriers allows numerous species to occur on both sides of such boundaries. While the regional populations of such widespread species are often morphologically indistinguishable from each other, genetic evidence suggests that they represent unique ecotypes, and likely even cryptic species, that may be uniquely adapted to their local environment. Here, we explored genomic divergence in four sympatric southern African decapod crustaceans whose ranges span the boundary between the cool-temperate west coast (south-eastern Atlantic) and the warm-temperate south coast (south-western Indian Ocean) near the southern tip of the African continent. Using genome-wide data, we found that all four species comprise distinct west coast and south coast ecotypes, with molecular dating suggesting divergence during the Pleistocene. Transcriptomic data from the hepatopancreas of twelve specimens of one of these species, the mudprawn Upogebia africana, which were exposed to either 10 °C or 20 °C, showed a clear difference in gene expression profiles between the west- and south coast ecotypes. This difference was particularly clear at 10 °C, where individuals from the south coast experienced a 'transcriptomic shock'. This low temperature is more typical of the west coast during upwelling events, and the physiological stress experienced by the south coast ecotype under such conditions may explain its absence from that coastline. Our results shed new light on the processes involved in driving genomic divergence and incipient speciation along coastlines with porous dispersal barriers.


Subject(s)
Decapoda/genetics , Ecotype , Gene Expression , Genetic Variation , Genome , Animals , Aquatic Organisms/genetics , Oceans and Seas , Seawater/chemistry , South Africa , Temperature
4.
Genes (Basel) ; 11(4)2020 04 17.
Article in English | MEDLINE | ID: mdl-32316496

ABSTRACT

The common brushtail possum (Trichosurus vulpecula), introduced from Australia in the mid-nineteenth century, is an invasive species in New Zealand where it is widespread and forms the largest self-sustained reservoir of bovine tuberculosis (Mycobacterium bovis) among wild populations. Conservation and agricultural authorities regularly apply a series of population control measures to suppress brushtail possum populations. The evolutionary consequence of more than half a century of intensive population control operations on the species' genomic diversity and population structure is hindered by a paucity of available genomic resources. This study is the first to characterise the functional content and diversity of brushtail possum liver and brain cerebral cortex transcriptomes. Raw sequences from hepatic cells and cerebral cortex were assembled into 58,001 and 64,735 transcripts respectively. Functional annotation and polymorphism assignment of the assembled transcripts demonstrated a considerable level of variation in the core metabolic pathways that represent potential targets for selection pressure exerted by chemical toxicants. This study suggests that the brushtail possum population in New Zealand harbours considerable variation in metabolic pathways that could potentially promote the development of tolerance against chemical toxicants.


Subject(s)
Biodiversity , Brain/metabolism , Liver/metabolism , Population Control , Transcriptome , Trichosurus/genetics , Animals , Female , Male , Molecular Sequence Annotation , New Zealand
SELECTION OF CITATIONS
SEARCH DETAIL
...