Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 111(4): 767-77, 2007 Feb 01.
Article in English | MEDLINE | ID: mdl-17249820

ABSTRACT

A series of new molecular discs (RDn, here n is the number of carbon atoms between the rod and disc mesogens) was synthesized via the chemical attachment of six cyanobiphenyl calamitic (rod) mesogens (R) linked to the triphenyl discotic (disc) mesogen (D) with a series of six alkyl chain linkages (n = 6-12). In this study, phase structures, transitions, and liquid crystalline (LC) behavior of the RD12 compound with 12 carbon atoms in each alkyl chain linkage between the rod and disc mesogens were investigated. Differential scanning calorimetry, polarized light microscopy, wide-angle X-ray diffraction (WAXD), and selected area electron diffraction (SAED) allowed us to identify three ordered phases below the isotropization temperature: nematic (N) LC and K1 and K2 crystalline phases. On the basis of the structural results obtained via 2D WAXD experiments on oriented samples and SAED experiments on single crystals, the K1 crystalline unit cell was determined to be triclinic with the dimensions of a = 1.36 nm, b = 1.45 nm, c = 2.11 nm, alpha = 85 degrees, beta = 100 degrees, and gamma = 50 degrees. The K2 phase was metastable with respect to the K1 phase. It also possessed a triclinic unit cell with a = 1.40 nm, b = 1.51 nm, c = 1.92 nm, alpha = 87 degrees, beta = 117 degrees, and gamma = 62 degrees. Molecular packing models for the crystalline phases were proposed on the basis of the diffraction results. In the whole range of ordered structures, it was found that RD12 molecular discs are intercalated. Both triphenyl discotic mesogens and cyanobiphenyl calamitic mesogens are completely interdigitated.

SELECTION OF CITATIONS
SEARCH DETAIL
...