Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 121
Filter
1.
J Comp Physiol B ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958740

ABSTRACT

The present study investigated the best photoperiod for culturing pacu (Piaractus mesopotamicus) in recirculation aquaculture systems (RAS) based on its growth performance and hematological and oxidative stress responses. Juveniles (∼ 5 g) were subjected to five treatments (in triplicate): 24 L (light):0D (dark), 15 L: 09D, 12 L:12D, 9 L:15D, and 0 L:24D for 45 days. A total of 225 pacu individuals were randomly distributed among 15 tanks of 210 L (n = 15 per tank). Zootechnical, hematological (glucose, lactate, hematocrit, and hemoglobin), and antioxidant and oxidative stress parameters (glutathione S-transferase (GST), total antioxidant capacity against peroxyl radicals (ACAP), and lipid peroxidation (LPO) were analyzed. The zootechnical parameters (e.g., weight gain, Fulton's condition factor, and specific growth rate) were better and worse with 9 L:15D and 24 L:0D photoperiods, respectively. The hepatosomatic index was higher and lower in the 0 L:24D and 9 L:15D photoperiods. Blood lactate levels and antioxidant and oxidative stress responses were increased in the longest photoperiods (15 L:9D and 24 L:0D). In contrast, the treatments that showed lower oxidative damage (liver, gills, brain, and muscle) were 9 L:15D and 12 L:12D. In conclusion, manipulating artificial light is one way to improve fish growth and health, where the best photoperiod for pacu farming in RAS is 9 L:15D.

2.
NanoImpact ; 33: 100497, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38316295

ABSTRACT

Polyethylene terephthalate (PET) is a commonly used thermoplastic in industry due to its excellent malleability and thermal stability, making it extensively employed in packaging manufacturing. Inadequate disposal of PET packaging in the environment and natural physical-chemical processes leads to the formation of smaller particles known as PET micro and nanoplastics (MNPs). The reduced dimensions enhance particle bioavailability and, subsequently, their reactivity. This study involved chemical degradation of PET using trifluoroacetic acid to assess the impact of exposure to varying concentrations of PET MNPs (0.5, 1, 5, 10, and 20 mg/L) on morphological, functional, behavioral, and biochemical parameters during the early developmental stages of zebrafish (Danio rerio). Characterization of the degraded PET revealed the generated microplastics (MPs) ranged in size from 1305 to 2032 µm, and that the generated nanoplastics (NPs) ranged from 68.06 to 955 nm. These particles were then used for animal exposure. After a six-day exposure period, our findings indicate that PET MNPs can diminish spontaneous tail coiling (STC), elevate the heart rate, accumulate on the chorion surface, and reduce interocular distance. These results suggest that PET exposure induces primary toxic effects on zebrafish embryo-larval stage of development.


Subject(s)
Nanoparticles , Water Pollutants, Chemical , Animals , Microplastics/toxicity , Plastics , Polyethylene Terephthalates/toxicity , Zebrafish , Water Pollutants, Chemical/toxicity , Nanoparticles/toxicity
3.
Environ Sci Pollut Res Int ; 31(8): 12005-12018, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38227263

ABSTRACT

The synthesis of silver nanoparticles (AgNPs) is usually based on expensive methods that use or generate chemicals that can negatively impact the environment. Our study presents a simple one-step synthesis process for obtaining AgNP using an aqueous extract of Amazonian fruit açai (Euterpe oleracea Mart.) as the reducing and stabilizing agents. The bio-synthesized AgNP (bio-AgNP) were comprehensively characterized by diverse techniques, and as a result, 20-nm spherical particles (transmission electron microscopy) were obtained. X-ray diffraction analysis (XRD) confirmed the presence of crystalline AgNP, and Fourier-transform infrared spectroscopy (FT-IR) suggested that polyphenolic compounds of açaí were present on the surface. The bio-AgNP showed antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter baumannii. In Caenorhabditis elegans exposed to 10 µg/L bio-AgNP for 96 h, there were no significant effects on growth, reproduction, or reactive oxygen species (ROS) concentration; however, there was an increase in superoxide dismutase (SOD) and glutathione-S-transferase (GST) enzymatic activity. In contrast, when worms were exposed to chemically synthesized AgNP (PVP-AgNP), an increase in ROS, SOD, and GST activity and a reduction in oxidative stress resistance were observed. In conclusion, our study not only showcased the potential of açaí in the simple and rapid production of AgNP but also highlighted the broad-spectrum antimicrobial activity of the synthesized nanoparticles using our protocol. Moreover, our findings revealed that these AgNPs exhibited reduced toxicity to C. elegans at environmentally realistic concentrations compared with PVP-AgNP.


Subject(s)
Anti-Infective Agents , Euterpe , Metal Nanoparticles , Animals , Silver/chemistry , Metal Nanoparticles/toxicity , Metal Nanoparticles/chemistry , Reactive Oxygen Species , Caenorhabditis elegans , Spectroscopy, Fourier Transform Infrared , Anti-Infective Agents/pharmacology , Superoxide Dismutase , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anti-Bacterial Agents/chemistry
4.
Toxicol Res (Camb) ; 12(5): 824-832, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37915497

ABSTRACT

Most organisms possess the capacity to metabolize arsenic (As) accumulating compounds to less toxic forms, thus minimizing the adverse effect induced by this metalloid. However, other contaminants may to interfere with As metabolism, contributing to the accumulation of more toxic compounds. Microplastics (MPs) are omnipresent in aquatic environment and may induce toxicological effects (alone or in combination with other contaminants) on living organisms. Therefore, the objective of the present study was to evaluate the effect of the exposure of the freshwater clam Limnoperna fortunei to a combination of MP (4 and 40 µg/L of polystyrene microbeads, 1.05 µm) and As (50 µg/L) for 48 h, evaluating the accumulation and metabolization of As and oxidative stress parameters, such as catalase (CAT), glutathione-S-transferase activities, total antioxidant competence, reduced glutathione (GSH), and lipid damage in the gills and digestive glands. Results revealed that low MP concentration disrupts the redox state of the digestive gland by a decrease in the antioxidant activity (CAT and total antioxidant capacity). GSH levels in the gills of animals exposed to MP (4 µg/L) alone and the combination of MP + As increased, concomitant with an increase in the percentage of toxic compounds, indicating the effect of MP on As metabolism. Although, few studies evaluated the effect of coexposure to MP + As by considering metabolization of metalloid in freshwater bivalve, our results revealed that exposure to MP reduced the metabolization capacity of As, favoring the accumulation of more toxic compounds besides the MP alone, which showed a pro-oxidant effect in L. fortunei.

5.
Animals (Basel) ; 13(22)2023 Nov 11.
Article in English | MEDLINE | ID: mdl-38003098

ABSTRACT

A 60-day feeding trial was conducted to evaluate the effects of including pumpkin seeds and pomace in the diets of Pacific white shrimp Penaeus vannamei, and the effects of these supplements on growth performance, body composition, and total polyphenol, flavonoid and carotenoid contents, as well as on total antioxidant activity, and body color parameters. Five diets were evaluated: pumpkin seeds (PS) at 50 and 100 g·kg-1, pumpkin pomace (PP) at 50 and 100 g·kg-1, and a control treatment. Pacific white shrimp (P. vannamei) juveniles (0.60 ± 0.01 g) were stocked in 15 tanks (310 L), containing 30 shrimps per tank, and the treatments were randomly distributed in triplicate. At the end of the experiment, shrimps were euthanized, weighed, and dissected for further analyses. The inclusion of PS in the diets impaired growth performance, reduced the total flavonoid content and had a pro-oxidative effect on muscle. The inclusion of PP in the diets did not affect growth performance, improved the feed conversion ratio, increased the total flavonoid content in the diets and hepatopancreas, and improved the antioxidant activity of the feeds and shrimp muscle. The total carotenoid content of the feeds increased with the inclusion of PS or PP in the diets; however, the total carotenoid content of shrimp increased only in those fed PP diets. Shrimp fed with PS diets showed a yellowish color and higher saturation when fresh and a reddish color and yellow hue angle after cooking. Shrimp fed PP diets turned reddish and yellowish, both when fresh and after cooking. The inclusion of PS in P. vannamei diets is not recommended; however, PP can be included at 100 g·kg-1 without affecting the growth parameters. Further studies evaluating the inclusion of higher PP levels in shrimp diets are recommended.

6.
Animals (Basel) ; 13(20)2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37894006

ABSTRACT

The objective of this was to evaluate the ability of bioflocs to assimilate and transfer antioxidant compounds present in açaí Euterpe oleracea to juvenile Penaeus vannamei shrimp grown in a biofloc system. Juvenile shrimp were distributed into four treatment groups (control, 5, 20, and 80 mg açaí L-1), containing 31 shrimps/tank (90 L), and cultivated for 30 days. Every 24 h throughout the experimental period, the respective açaí concentrations were added directly to the cultivation water. The bioflocs and hepatopancreas lost their antioxidant capacity with increasing concentrations of açaí; however, lipid damage was mitigated after treatment with 20 mg of açaí L-1 (p < 0.05). The application of 20 mg açaí L-1 increased the mean height and area of the middle intestinal microvilli (p < 0.05). Mortality and protein and lipid damage in shrimp muscle increased with daily administration of 80 mg açaí L-1 (p < 0.05). It is concluded that the bioflocs were able to assimilate the antioxidants present in açaí and transfer them to the shrimp, and the administration of 20 mg açaí L-1 presented the best performance, demonstrating the possibility of its application in the cultivation of P. vannamei in a biofloc system.

7.
Antioxidants (Basel) ; 12(7)2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37507976

ABSTRACT

Lipoic acid (LA) is a mitochondrial coenzyme that, depending on the concentration and exposure time, can behave as an antioxidant or pro-oxidant agent and has a proven ability to modulate metabolism by promoting lipid and glucose oxidation for energy production. To assess the effects of LA on energy metabolism and redox balance over time, Artemia sp. nauplii was used as an animal model. The administered concentrations of the antioxidant were 0.05, 0.1, 0.5, 1.0, 5.0, and 10.0 µM. Therefore, possible differences in protein, triglyceride, glucose, and lactate concentrations in the artemia samples and total ammoniacal nitrogen (TAN) in the culture water were evaluated. We also measured the effects of LA on in vivo activity of the electron transport system (ETS), antioxidant capacity, and production of reactive oxygen species (ROS) at 6, 12, 18, and 24 h post-hatching. There was a decrease in glucose concentration in the LA-treated animals, and a decrease in ammonia production was observed in the 0.5 µM LA treatment. ETS activity was positively regulated by the addition of LA, with the most significant effects at concentrations of 5.0 and 10.0 µM at 12 and 24 h. For ETS activity, treatments with LA presented the highest values at 24 h, a period when ROS production decreased significantly, for the treatment with 10.0 µM. LA showed positive regulation of energy metabolism together with a decrease in ROS and TAN excretion.

8.
Environ Sci Pollut Res Int ; 30(36): 85359-85372, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37382819

ABSTRACT

In the current study, we assessed the impact of DMA (dimethylarsinic acid) and MPs (microplastics) interactions in C. elegans over the course of five generations. We found that the redox state of the organisms changed over generations as a result of exposure to both pollutants. From the third generation onward, exposure to MPs reduced GST activity, indicating reduced detoxifying abilities of these organisms. Additionally, dimethylarsinic exposure decreased the growth of organisms in the second, fourth, and fifth generations. In comparison to isolated pollutants, the cumulative effects of co-exposure to DMA and MPs seem to have been more harmful to the organisms, as demonstrated by correlation analysis. These findings demonstrate that DMA, despite being considered less hazardous than its inorganic equivalents, can still have toxic effects on species at low concentrations and the presence of MPs, can worsen these effects.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Animals , Caenorhabditis elegans , Microplastics , Polystyrenes/toxicity , Plastics , Cacodylic Acid/toxicity , Environmental Pollutants/pharmacology , Water Pollutants, Chemical/toxicity
9.
Article in English | MEDLINE | ID: mdl-36302473

ABSTRACT

The effects of silver nano/microparticles (AgP) on juvenile Litopenaeus vannamei shrimp were evaluated through several responses, aiming to use it as a prophylactic and therapeutic method. Shrimps (3.19 ± 0.13 g) were exposed to clear water for 3 h with increasing concentrations of nanosilver (0; 25; 100; and 400 µg/l). After 3 h of exposure, they were transferred to water without nanosilver for 30 days (recovery). The weight gain and weekly growth were not affected by AgNP. Total antioxidant capacity (ACAP) increased in the hepatopancreas (exposure period) and gills (recovery) in shrimp exposed to AgNP. In muscle, ACAP was induced in shrimp exposed to 100 µg/l AgNP (exposure). In the gills, there was an increase in TBARS in shrimp exposed to 100 µg/l AgNP (recovery). In the concentration of protein-associated sulfhydryl groups (P-SH), a decrease was observed in the hepatopancreas (recovery) in the 100 µg/l AgNP treatment. In chromaticity parameters, an increase in reddish tones was observed in shrimp exposed to 100 µg/l AgNP (recovery). An increase in granular hemocytes was verified in shrimp exposed to 25 and 400 µg/l AgNP during exposure. Tissues analyzed histologically showed normal patterns without apoptosis or necrosis processes, and after 30 d of recovery, only in one muscle sample of shrimp exposed to µg/l of AgNP was silver detected. It is concluded that a prophylactic action of short duration (3 h) mostly did not affected the welfare of shrimp L. vannamei and can be considered its use as a therapeutic strategy.


Subject(s)
Penaeidae , Silver , Animals , Silver/toxicity , Antioxidants/pharmacology , Hepatopancreas
10.
Sensors (Basel) ; 22(19)2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36236671

ABSTRACT

Sixth-generation wireless (6G) technology has been focused on in the wireless research community. Global coverage, massive spectrum usage, complex new applications, and strong security are among the new paradigms introduced by 6G. However, realizing such features may require computation capabilities transcending those of present (classical) computers. Large technology companies are already exploring quantum computers, which could be adopted as potential technological enablers for 6G. This is a promising avenue to explore because quantum computers exploit the properties of quantum states to perform certain computations significantly faster than classical computers. This paper focuses on routing optimization in wireless mesh networks using quantum computers, explicitly applying the quantum approximate optimization algorithm (QAOA). Single-objective and multi-objective examples are presented as robust candidates for the application of quantum machine learning. Moreover, a discussion about quantum supremacy estimation for this problem is provided.

11.
Toxicol Res (Camb) ; 11(3): 402-416, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35782638

ABSTRACT

Although arsenic (As) is a persistent contaminant in the environment, few studies have assessed its effects over generations, as it requires an animal model with a short lifespan and rapid development, such as the nematode Caenorhabditis elegans. Furthermore, few studies have evaluated the effects of As metabolites such as dimethylarsinic acid (DMAV), and several authors have considered DMA as a moderately toxic intermediate of As, although recent studies have shown that this chemical form can be more toxic than inorganic arsenic (iAs) even at low concentrations. In the present study, we compared the toxic effects of arsenate (AsV) and DMAV in C. elegans over 5 subsequent generations. We evaluated biochemical parameters such as reactive oxygen species (ROS) concentration, the activity of antioxidant defense system (ADS) enzymes such as catalase (CAT) and glutathione-S-transferase (GST), and nonenzymatic components of ADS such as reduced glutathione (GSH) and protein-sulfhydryl groups (P-SH). Exposure to 50 µg L-1 of AsV led to an increase in ROS generation and GSH levels together with a decrease in GST activity, while exposure to DMAV led to an increase in ROS levels, with an increase in lipid peroxidation, CAT activity, and a decrease in GSH levels. In addition, both treatments reduced animal growth from the third generation onward and caused disturbances in their reproduction throughout all 5 generations. This study shows that the accumulated effects of DMA need to be considered; it highlights the importance of this type of multigenerational approach for evaluating the effects of organic contaminants considered low or nontoxic.

12.
Aquat Toxicol ; 246: 106148, 2022 May.
Article in English | MEDLINE | ID: mdl-35364510

ABSTRACT

Saxitoxin (STX) is a neurotoxic cyanotoxin that also generate reactive oxygen species, leading to a situation of oxidative stress and altered metabolism. The Amazonian fruit açaí Euterpe oleracea possesses a high concentration of antioxidant molecules, a fact that prompted us to evaluate its chemoprotection activity against STX toxicity (obtained from samples of Trichodesmium sp. collected in the environment) in the shrimp Litopenaeus vannamei. For 30 days, shrimps were maintained in 16 aquaria containing 10 shrimps (15% salinity, pH 8.0, 24 °C, 12C/12D photoperiod) and fed twice daily with a diet supplemented with lyophilized açaí pulp (10%), in addition to the control diet. After, shrimps (7.21 ± 0.04 g) were exposed to the toxin added to the feed for 96 h. Four treatments were defined: CTR (control diet), T (lyophilized powder of Trichodesmium sp. 0.8 µg/g), A (10% of açaí) and the combination T + A. HPLC analysis showed predominance of gonyautoxin-1 concentrations (GTX-1) and gonyautoxin-4 concentrations (GTX-4). The results of molecular docking simulations indicated that all variants of STX, including GTX-1, can be a substrate of isoform mu of the glutathione-S-transferase (GST) enzyme since these molecules obtained similar values of estimated Free Energy of Binding (FEB), as well as similar final positions on the binding site. GSH levels were reduced in muscle tissues of shrimp in the T, A, and T + A treatments. Increased GST activity was observed in shrimp hepatopancreas of the T treatment and the gills of the A and T + A treatments. A decrease of protein sulfhydryl groups (P-SH) was observed in gills of shrimps from T + A treatment. A reduction in malondialdehyde (MDA) levels was registered in the hepatopancreas of the T + A treatment in respect to the Control, T, and A treatments. The use of açaí supplements in L. vannamei feed was able to partially mitigate the toxic effects caused by Trichodesmium sp. extracts, and points to mu GST isoform as a key enzyme for saxitoxin detoxification in L. vannamei, an issue that deserves further investigation.


Subject(s)
Euterpe , Penaeidae , Water Pollutants, Chemical , Animals , Euterpe/chemistry , Molecular Docking Simulation , Saxitoxin/toxicity , Water Pollutants, Chemical/toxicity
13.
Mar Biotechnol (NY) ; 23(6): 881-891, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34714442

ABSTRACT

The animals from bycatch of the shrimp fisheries can be a source of natural products and bioactive compounds. Thus, the present study aimed to evaluate the bioactivity of protein hydrolysates prepared from the two most abundant crabs from the bycatch of shrimp fisheries in Brazil (Callinectes ornatus and Hepatus pudibundus). Samples of C. ornatus and H. pudibundus were collected in the region of Ubatuba, State of São Paulo, Brazil. Muscles with small pieces of exoskeleton of both species were hydrolyzed using two enzymes, Alcalase 2.4 L® or Protamex®. The in vitro antioxidant capacity was analyzed used three methods: DPPH, sulfhydryl groups, and peroxyl radicals. Additionally, the cytotoxicity of the hydrolysates was investigated using pre-osteoblasts cells. The results showed that the degree of hydrolysis (DH) of H. pudibundus was superior to DH of C. ornatus using both enzymes and was higher when using the enzyme Alcalase 2.4 L® (32.0% ± 1.9). The analysis suggested that the hydrolysates have antioxidant activity. Besides that, no cytotoxic effect was observed on cell viability. Thus, protein hydrolysates of C. ornatus and H. pudibundus have bioactivity, which add value to these bycatch species and suggests their potential use as nutraceutical ingredient in the food industry.


Subject(s)
Protein Hydrolysates , Seafood , Animals , Antioxidants/pharmacology , Brazil , Fisheries , Hydrolysis , Protein Hydrolysates/chemistry
14.
Fish Physiol Biochem ; 47(6): 1851-1864, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34562200

ABSTRACT

The Amazonian açai fruit (Euterpe oleracea) has shown promising anticonvulsant properties, comparable to those of diazepam (BDZ) in in vivo models submitted to pentylenetetrazole (PTZ). PTZ is a classic convulsant agent used in studies for the purpose of screening anticonvulsants and investigating the mechanisms of epilepsy. Herein, we aimed to determine, for the first time, the effect of dietary administration of lyophilized E. oleracea (LEO) on PTZ-induced seizures, using juvenile Colossoma macropomum fish (9.1 ± 1.5 g) as a model. A control diet (0.00% LEO) and two levels of LEO inclusion were established: 5.00% and 10.0% LEO (w/w). Fish were divided into five groups (n = 5): control (0.9% physiological solution; i.p.), PTZ (PTZ 150 mg kg-1; i.p.), PTZ LEO 5.00%, PTZ LEO 10.0%, and BDZ-PTZ (BDZ: diazepam 10 mg kg-1; i.p.). In addition to the electroencephalography (EEG), the lipid peroxidation (TBARS) was quantified in the brain, along with the characterization of behavioral responses. Fish receiving PTZ showed intense action potential bursts (APB), which overlapped with a hyperactive behavior. In PTZ LEO 5.00% and 10.0% groups, convulsive behavior was significantly reduced compared to the PTZ group. Fish fed 5.00% or 10.0% LEO and exposed to PTZ showed less excitability and lower mean amplitude in tracings. The inclusion of 10.0% LEO in the diet prevented the increase in mean amplitude of the EEG waves by 80%, without significant differences to the quantified mean amplitude of the BDZ-PTZ group. TBARS concentration was reduced by 60% in the brain of fish fed 10.0% LEO-enriched diets relative to the PTZ-administered group. The results of this study demonstrated the anticonvulsant and protective roles of LEO to the brain, and the dietary inclusion of LEO seems to be promising for the formulation of functional diets. Results of this study may boost the interest on the anti-seizurogenic properties of Euterpe oleracea, including the development of new approaches for the prevention of seizures in humans and animals with low epileptic threshold.


Subject(s)
Anticonvulsants/therapeutic use , Brain/drug effects , Characiformes , Euterpe , Seizures , Animals , Diazepam/therapeutic use , Diet/veterinary , Euterpe/chemistry , Lipid Peroxidation , Pentylenetetrazole , Seizures/chemically induced , Seizures/drug therapy , Seizures/veterinary , Thiobarbituric Acid Reactive Substances
15.
Article in English | MEDLINE | ID: mdl-34375731

ABSTRACT

Effect of selenium and acidification in freshwater environment was assessed solitary but no reports are available on the impacts of both factors act together. In the present study, effects of combined simultaneous exposure to selenium (Se) and low pH were assessed in Mozambique tilapia, Oreochromis mossambicus. Responses were measured based on antioxidant defenses (enzymatic SOD, CAT, GPx and non-enzymatic GSH), biotransformation enzyme (GST), metallothionein levels (MT), oxidative damage (LPO, CP), Na+/K+-ATPase (NKA) activity in gills and liver tissues and neurotoxicity (acetylcholinesterase, AChE) response in brain tissue. Fish were exposed to combined treatment at different pH levels (7.5, control (optimum pH for tilapia growth); 5.5, low pH) and Se concentrations (0, 10, and 100 µg L-1). Toxicity levels of Se were not significantly different under control and low pH indicating that pH did not affect Se toxicity. Levels of GSH and MT were enhanced in Se-exposed fish at both pH. Combined effects of high Se concentration and low pH decreased SOD and CAT activities and increased those of GPx and GST. However, organisms were not able to prevent cellular damage (LPO and CP), indicating a condition of oxidative stress. Furthermore, inhibition of Na+/K+-ATPase activity was showed. Additionally, neurotoxicity effect was observed by inhibition of cholinesterase activity in organisms exposed to Se at both pH conditions. As a result, the combined stress of selenium and freshwater acidification has a slight impact on antioxidant defense mechanisms while significantly inhibiting cholinesterase and Na+/K + -ATPase activity in fish. The mechanisms of freshwater acidification mediating the toxic effects of trace non-metal element on freshwater fish need to investigate further.


Subject(s)
Acids/toxicity , Selenium/toxicity , Tilapia/growth & development , Animals , Antioxidants/metabolism , Brain/drug effects , Brain/metabolism , Brain/pathology , Fish Diseases/chemically induced , Fish Diseases/metabolism , Fish Diseases/pathology , Fresh Water , Gills/drug effects , Gills/metabolism , Gills/pathology , Hydrogen-Ion Concentration , Lipid Peroxidation , Liver/drug effects , Liver/metabolism , Liver/pathology , Neurotoxicity Syndromes/etiology , Neurotoxicity Syndromes/pathology , Neurotoxicity Syndromes/veterinary , Oxidative Stress/drug effects , Tilapia/metabolism , Water Pollutants, Chemical/toxicity
16.
Food Chem ; 364: 130380, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34167008

ABSTRACT

This study aimed to microencapsulate protein hydrolysates from stripped weakfish (Cynoscion guatucupa) industrial byproducts produced by Alcalase (HA) and Protamex (HP) by spray drying, using maltodextrin as wall material. The physicochemical characteristics, and in vitro antioxidant and Angiotensin-I converting enzyme-inhibitory activities were evaluated during storage. Both microencapsulated hydrolysates showed spherical shape (~3.6 µm particle diameter), low water activity (<0.155) during storage and reduced hygroscopicity (~30%) compared to the free hydrolysate. Infrared spectroscopy evidenced the maltodextrin-hydrolysate interaction. Based on the in vitro results, nematoid C. elegans in L1 larval stage were treated with free and microencapsulated HP, which demonstrated a protective effect on nematoid exposed to oxidative stress (survival ~ 13% control, 77% free HP, and 85% microencapsulated HP) and improved their growth and reproduction rate. Thus, microencapsulation appears to be a good alternative to maintain hydrolysates stability during storage, showing bioactivity in C. elegans.


Subject(s)
Caenorhabditis elegans , Protein Hydrolysates , Animals , Antioxidants , Subtilisins
17.
Food Chem ; 342: 128361, 2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33077277

ABSTRACT

Shrimp trawling is an important socio-economic activity; however, the bycatch can be problematic to the environment. Thus, the present study investigated potential uses of the bycatch to generate value-added products. The biological activity of the protein hydrolysates obtained from the two most abundant fish species (Micropogonias furnieri and Paralonchurus brasiliensis) was evaluated. Muscle and skin samples of both species were hydrolyzed using two enzymes, Alcalase 2.4 L® or Protamex®. The in vitro antioxidant capacity against peroxyl radicals, DPPH, and sulfhydryl groups were analyzed. Cell viability, Western Blotting, Zymogram, and Real-time PCR analyses were performed. The results showed that the hydrolysates have antioxidant activity and no effect on cell viability at doses lower than 16 mg/mL. In addition, they can modulate extracellular remodelling and intracellular pathways related to cell adhesion. Thus, the hydrolysis of the fish bycatch allows the release of bioactive peptides with potential use in the food industry.


Subject(s)
Antioxidants/pharmacology , Fisheries , Fishes , Protein Hydrolysates/pharmacology , Animals , Antioxidants/metabolism , Fishes/metabolism , Peptides/pharmacology , Protein Hydrolysates/metabolism , Seafood , Subtilisins/metabolism
18.
Drug Chem Toxicol ; 44(1): 30-38, 2021 Jan.
Article in English | MEDLINE | ID: mdl-31257991

ABSTRACT

Aquatic animals are vulnerable to arsenic (As) toxicity. However, rarely does a contaminant occur alone in the aquatic environment. For this reason, this study was conducted to evaluate whether titanium dioxide nanoparticles (nTiO2) can interfere with the effects induced by As in Litopenaeus vannamei. Arsenic accumulation and metabolic capacity; expression and enzymatic activity of GSTΩ (glutathione-S-transferase omega isoform); antioxidant responses such as GSH, GR, and GST (reduced glutathione levels, glutathione reductase, and glutathione-S-transferase activity, respectively); and lipid peroxidation in the gills and hepatopancreas of shrimp were evaluated. The results are summarized as follows: (1) higher accumulation of As occurred in both tissues after exposure to As alone; (2) co-exposure to nTiO2 affected the capacity to metabolize As; (3) GSTΩ gene expression was not modified, but its activity was decreased by co-exposure to both contaminants; (4) As alone increased the GSH levels in the hepatopancreas, and co-exposure to nTiO2 reduced these levels in both tissues; (5) a decrease in the GST activity in the gills occurred with all treatments; (6) in the gills, GR activity was increased by As, and nTiO2 reversed this increase, whereas in the hepatopancreas co-exposure inhibited enzyme activity; (7) only in the hepatopancreas lipid damage was observed when animals were exposed to As or nTiO2 but not in co-exposure. The results showed that the As induces toxic effects in both tissues of shrimp and that co-exposure to nTiO2 can potentiate these effects and decrease the capacity to metabolize As, favoring the accumulation of more toxic compounds.


Subject(s)
Antioxidants/metabolism , Arsenites/toxicity , Metal Nanoparticles/toxicity , Oxidative Stress/drug effects , Penaeidae/drug effects , Sodium Compounds/toxicity , Titanium/toxicity , Water Pollutants, Chemical/toxicity , Animals , Arsenites/metabolism , Gills/drug effects , Gills/metabolism , Hepatopancreas/drug effects , Hepatopancreas/metabolism , Lipid Peroxidation/drug effects , Penaeidae/metabolism , Sodium Compounds/metabolism , Tissue Distribution , Water Pollutants, Chemical/metabolism
19.
Article in English | MEDLINE | ID: mdl-33164844

ABSTRACT

The use of carbon nanomaterials (CNMs) is growing in different technological fields, raising concern on their potential impacts on the environment. Given its diverse nanothenological applications, graphene oxide (GO) stands out among the most widely used CNMs. Its hydrophilic capacity enables it to remain stable in suspension in water allowing that GO can be accessible for accumulation by aquatic organisms through ingestion, filtration and superficial dermal contact when present in aquatic ecosystems. Considering that the effects induced to aquatic organisms may depend on environment characteristics, such as temperature, salinity, water pH as well as the presence/absence of sediment, the present study aimed to investigate the influence of sediment on the impacts caused by GO exposure. For this, oxidative stress parameters were measured in the clam Ruditapes philippinarum, exposed to different GO concentrations (0.01, 0.1 and 1 mg/L), in the presence and absence of sediment, for a 28-days experimental period. The results here presented showed that regardless the presence or absence of sediment, most of the biochemical parameters considered were altered when clams were exposed to the highest concentration. The present findings further revealed that in the presence of sediment, clams mostly invested in non-enzymatic defenses (such as reduced glutathione, GSH), while animals exposed to GO in the absence of sediment favored their enzymatic antioxidant defense capacity (catalase, CAT and superoxide dismutase, SOD). This study highlights the relevance of environmental variations as key factors influencing organisms' responses to pollutants.


Subject(s)
Bivalvia/drug effects , Geologic Sediments/chemistry , Graphite/toxicity , Oxidative Stress/drug effects , Water Pollutants, Chemical/toxicity , Animals , Antioxidants/metabolism , Bivalvia/metabolism , Catalase/metabolism , Dose-Response Relationship, Drug , Ecosystem , Glutathione/metabolism , Lipid Peroxidation/drug effects , Superoxide Dismutase/metabolism , Time Factors
20.
Sensors (Basel) ; 20(22)2020 Nov 10.
Article in English | MEDLINE | ID: mdl-33182566

ABSTRACT

Vehicular networks provide means to distribute data among intelligent vehicles, increasing their efficiency and the safety of their occupants. While connected to these networks, vehicles have access to various kinds of information shared by other vehicles and road-side units (RSUs). This information includes helpful resources, such as traffic state or remote sensors. An efficient and fast system to get access to this information is important but unproductive if the data are not appropriately structured, accessible, and easy to process. This paper proposes the creation of a semantic distributed network using content-addressed networking and peer-to-peer (P2P) connections. In this open and collaborative network, RSUs and vehicles use ontologies to semantically represent information and facilitate the development of intelligent autonomous agents capable of navigating and processing the shared data. In order to create this P2P network, this paper makes use of the Inter-Planetary File System (IPFS), an open source solution that provides secure, reliable, and efficient content-addressed distributed storage over standard IP networks using the new QUIC protocol. This paper highlights the feasibility of this proposal and compares it with the state-of-the-art. Results show that IPFS is a promising technology that offers a great balance between functionality, performance, and security.

SELECTION OF CITATIONS
SEARCH DETAIL
...