Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Bioanal Chem ; 410(4): 1217-1230, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28940009

ABSTRACT

Foodborne pathogens are a burden to the economy and a constant threat to public health. The ability to rapidly detect the presence of foodborne pathogens is a vital component of any strategy towards establishing a safe and secure food supply chain. Bacteriophages (phages) are viruses capable of infecting and replicating within bacteria in a strain-specific manner. The ubiquitous and selective nature of phages makes them ideal for the detection and biocontrol of bacteria. Therefore, the objective of this research was to develop and test a phage-based paper dipstick biosensor for the detection of various foodborne pathogens in food matrices. The first step was to identify the best method for immobilizing phages on paper such that their biological activity (infectivity) was preserved. It was found that piezoelectric inkjet printing resulted in lower loss of phage infectivity when compared with other printing methods (namely gravure and blade coating) and that ColorLok paper was ideally suited to create functional sensors. The phage-based bioactive papers developed with use of piezoelectric inkjet printing actively lysed their target bacteria and retained this antibacterial activity for up to 1 week when stored at room temperature and 80% relative humidity. These bioactive paper strips in combination with quantitative real-time PCR were used for quantitative determination of target bacteria in broth and food matrices. A phage dipstick was used to capture and infect Escherichia coli O157:H7, E. coli O45:H2, and Salmonella Newport in spinach, ground beef and chicken homogenates, respectively, and quantitative real-time PCR was used to detect the progeny phages. A detection limit of 10-50 colony-forming units per millilitre was demonstrated with a total assay time of 8 h, which was the duration of a typical work shift in an industrial setting. This detection method is rapid and cost-effective, and may potentially be applied to a broad range of bacterial foodborne pathogens. Graphical abstract ᅟ.


Subject(s)
Coliphages , Food Microbiology , Biosensing Techniques , Colony Count, Microbial , Culture Media , Escherichia coli O157/isolation & purification , Escherichia coli O157/pathogenicity , Limit of Detection , Paper
2.
Lab Chip ; 17(5): 943-950, 2017 02 28.
Article in English | MEDLINE | ID: mdl-28197602

ABSTRACT

We describe a versatile and simple method to perform sequential reactions on paper analytical devices by stacking dry pullulan films on paper, where each film contains one or more reagents or acts as a delay layer. Exposing the films to an aqueous solution of the analyte leads to sequential dissolution of the films in a temporally controlled manner followed by diffusive mixing of the reagents, so that sequential reactions can be performed. The films can be easily arranged for lateral flow assays or for spot tests (reactions take place sequentially in the z-direction). We have tested the general feasibility of the approach using three different model systems to demonstrate different capabilities: 1) pH ramping from low to high and high to low to demonstrate timing control; 2) rapid ready-to-use two-step Simon's assays on paper for detection of drugs of abuse utilizing a 2-layer stack containing two different reagents to demonstrate the ability to perform assays in the z-direction; and 3) sequential cell lysing and colorimetric detection of an intracellular bacterial enzyme, to demonstrate the ability of the method to perform sample preparation and analysis in the form of a spot assay. Overall, these studies demonstrate the potential of stacked pullulan films as useful components to enable multi-step assays on simple paper-based devices.


Subject(s)
Glucans/chemistry , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Paper , Diethylamines/analysis , Equipment Design , Escherichia coli/isolation & purification , Hydrogen-Ion Concentration , Indicators and Reagents/chemistry
3.
Chembiochem ; 18(6): 502-505, 2017 03 16.
Article in English | MEDLINE | ID: mdl-28090736

ABSTRACT

RNA is a functionally versatile polymer but suffers from susceptibility to spontaneous and RNase-catalyzed degradation. This vulnerability makes it difficult to preserve RNA for extended periods of time, thus limiting its use in various contexts, including practical applications as functional nucleic acids. Here we present a simple method to preserve RNA by pullulan (a complex sugar produced by Aureobasidium pullulans fungus) film formation. This strategy can markedly suppress both spontaneous and RNase degradation. Importantly, the pullulan film readily dissolves in aqueous solution, thus allowing retrieval of fully functional RNA species. In order to illustrate the advantage of this protective method in a practical application, we engineered a simple paper sensor containing a bacteria-detecting RNA-cleaving DNAzyme. This detection capability of the device was unchanged after storage at room temperature for six months.


Subject(s)
Glucans/chemistry , RNA , Glucans/pharmacology , Hydrogen-Ion Concentration , RNA/chemistry , RNA/drug effects , RNA/metabolism , RNA Stability/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...