Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Future Microbiol ; 18: 107-116, 2023 01.
Article in English | MEDLINE | ID: mdl-36661097

ABSTRACT

Background: There is critical need for new therapeutic options for treatment of diseases caused by mycobacteria. Materials & methods: Gallesia integrifolia essential oils (EOs) and crude extracts (CEs) were tested for their anti-Mycobacterium tuberculosis and anti-nontuberculous mycobacteria activity. Results: Minimum inhibitory concentration (MIC) of EOs ranged from 15.63 to 62.5 µg/ml against M. tuberculosis and 62.5 to >250 µg/ml against nontuberculous mycobacteria. CEs showed low activity. All EO tested demonstrated synergism with antituberculosis drugs. The cytotoxicity of EOs and CEs, in different cell lines, showed selectivity index from 2.2 to 9.8 and >0.056 to 2.0, respectively. Conclusion: G. integrifolia EOs are a candidate for the development of new therapeutic options in the treatment of tuberculosis and other mycobacterial diseases.


Subject(s)
Mycobacterium Infections , Mycobacterium tuberculosis , Oils, Volatile , Humans , Oils, Volatile/pharmacology , Antitubercular Agents/pharmacology , Nontuberculous Mycobacteria , Microbial Sensitivity Tests
2.
Future Microbiol ; 17: 267-280, 2022 03.
Article in English | MEDLINE | ID: mdl-35164529

ABSTRACT

Background: The development of drugs is essential to eradicate tuberculosis. Materials & methods: Sixteen 3,5-dinitrobenzoylhydrazone (2-17) derivatives and their synthetic precursors 3,5-dinitrobenzoylhydrazide (1) and methyl ester (18) were screened for their anti-Mycobacterium tuberculosis (Mtb) potential. Results: Twelve compounds had minimum inhibitory concentration (MIC) ranging from 0.24 to 7.8 µg/ml against the Mtb strain. The activity was maintained in multidrug-resistant Mtb clinical isolates. Only compound (17) showed activity against nontuberculous mycobacteria. The compounds exhibited a limited spectrum of activity, with an MIC >500 µg/ml against Gram-positive and -negative bacteria. Compounds (2), (5) and (11) showed a synergistic effect with rifampicin. An excellent selectivity index value was found, with values reaching 583.33. Conclusion: 3,5-dinitrobenzoylhydrazone derivatives could be considered as a scaffold for the development of antituberculosis drugs.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Antitubercular Agents/pharmacology , Humans , Microbial Sensitivity Tests , Rifampin/pharmacology , Tuberculosis/drug therapy , Tuberculosis/microbiology
3.
Future Microbiol ; 14: 331-344, 2019 03.
Article in English | MEDLINE | ID: mdl-30757916

ABSTRACT

AIM: To evaluate (i) the in vitro activity of eugenol (EUG) and three derivatives against Mycobacterium tuberculosis (Mtb), nontuberculous mycobacteria (NTM) and other bacteria, (ii) the EUG and antituberculosis drugs combinatory effect and (iii) the EUG and its derivatives cytotoxicity. MATERIALS & METHODS: Minimum inhibitory concentration of the compounds were determined by resazurin microtiter or broth microdilution assay and the drug interaction between EUG and antituberculosis drugs by resazurin drug combination microtiter. The cytotoxicity was carried out in macrophages, HeLa and VERO cells. Results: EUG and derivatives displayed activity and synergic effect of EUG combined with rifampicin, isoniazid, ethambutol, and pyrazinamide in Mtb including multidrug-resistant isolates, with more selectivity to bacillus than macrophages, HeLa and VERO cells (selective index from 0.65 to 31.4). EUG derivatives (4-allyl-2-methoxyphenyl acetate, 4-allyl-2-methoxyphenyl benzoate, and 4-allyl-2-methoxyphenyl 4-nitrobenzoate) were more active against nontuberculous mycobacteria than EUG. EUG and derivatives exhibited low activity in other Gram-positive and -negative bacteria. CONCLUSION: EUG and its derivatives show activity against Mycobacterium spp. and synergic effect of EUG combined with antituberculosis drugs against Mtb.


Subject(s)
Antitubercular Agents/pharmacology , Eugenol/chemistry , Eugenol/pharmacology , Mycobacterium tuberculosis/drug effects , Nontuberculous Mycobacteria/drug effects , Animals , Chlorocebus aethiops , Humans , Microbial Sensitivity Tests , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...