Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 763: 143010, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33131845

ABSTRACT

Airborne bacteria were characterized over a 2-y period via high-throughput massive sequencing of 16S rRNA gene in aerosol samples collected at a background mountain European Monitoring and Evaluation Programme (EMEP) Network site (Monte Martano, Italy) located in the Central Mediterranean area. The air mass origin of nineteen samples was identified by air mass modelling and a detailed chemical analysis was performed. Four main origins (Saharan, North-western, North-eastern, and Regional) were identified, and distinct microbial communities were associated with these air masses. Samples featured a great bacterial diversity with Protobacteria being the most abundant phylum, and Sphingomonas followed by Acidovorax, Acinetobacter and Stenotrophomonas the most abundant genera of the dataset. Bacterial genera including potential human and animal pathogens were more abundant in European and in Regional samples compared to Saharan samples; this stressed the relevance of anthropic impact on bacterial populations transported by air masses that cross densely populated areas. The principal aerosol chemical characteristics and the airborne bacterial communities were correlated by cluster analysis, similarity tests and non-metric multidimensional scaling analysis, explaining most of the variability observed. However, the strong correlation between bacterial community structure and air mass origin hampered the possibility to disentangle the effects of variations in bacterial populations and in dust provenance on variations in chemical variables.


Subject(s)
Dust , Environmental Monitoring , Africa, Northern , Air Microbiology , Dust/analysis , Humans , Italy , RNA, Ribosomal, 16S/genetics
2.
Sci Total Environ ; 645: 401-410, 2018 Dec 15.
Article in English | MEDLINE | ID: mdl-30029119

ABSTRACT

In this paper, we present a comprehensive taxonomic survey of the bacterial community and accurate quantification of polycyclic aromatic hydrocarbons (PAHs) associated with an intense Saharan dust advection, which impacted Central Mediterranean area in the whole 2014-2015 period. This work is part of an intensive field campaign at the EMEP regional background site of Monte Martano (Central Italy), considered well representative of long-range transport in the Central Mediterranean area. 22 samples have been characterized in their provenance region and have been considered for the chemical and biological characterization. The event described in the present paper was exceptionally intense at the sampling site allowing a detailed evaluation of the dust load on a regional scale, an estimation of the impact of PAH based on the Toxic Equivalency Factor methodology and a thorough characterization of the airborne bacterial fraction performed by High Throughput Sequencing approach. Afterward, we cultured viable bacteria and evaluated several enzymatic activities and conducted UV survival tests. Principal findings include: (i) the striking evidence that, during the Saharan dust event, a highly diverse and abundant bacterial community was associated with PAH concentrations higher than the yearly mean; (ii) the tangible presence of cultivable microbes; (iii) the proof that the isolates recovered from Saharan dust had the potential to be metabolically active and that almost all of them were able to persist following UV radiation exposure. Comparisons of results for the present case study with mean values for the 2014-2015 experimental campaign are presented. The bacterial community and chemical speciation associated with the Saharan dust advection were specific and very different from those associated with other air masses. The particular case of North-Western Atlantic, which represents one of the most typical advection route reaching the sampling site is discussed in detail.


Subject(s)
Air Microbiology , Air Pollutants/analysis , Bacteria , Dust/analysis , Environmental Monitoring , Africa, Northern , Italy , Polycyclic Aromatic Hydrocarbons/analysis
3.
Microbes Environ ; 30(3): 262-9, 2015.
Article in English | MEDLINE | ID: mdl-26370166

ABSTRACT

In human and wildlife populations, the natural microbiota plays an important role in health maintenance and the prevention of emerging infectious diseases. In amphibians, infectious diseases have been closely associated with population decline and extinction worldwide. Skin symbiont communities have been suggested as one of the factors driving the different susceptibilities of amphibians to diseases. The activity of the skin microbiota of amphibians against fungal pathogens, such as Batrachochytrium dendrobatidis, has been examined extensively, whereas its protective role towards the cutaneous infectious diseases caused by Amphibiocystidium parasites has not yet been elucidated in detail. In the present study, we investigated, for the first time, the cutaneous microbiota of the Italian stream frog (Rana italica) and characterized the microbial assemblages of frogs uninfected and infected by Amphibiocystidium using the Illumina next-generation sequencing of 16S rRNA gene fragments. A total of 629 different OTUs belonging to 16 different phyla were detected. Bacterial populations shared by all individuals represented only one fifth of all OTUs and were dominated by a small number of OTUs. Statistical analyses based on Bray-Curtis distances showed that uninfected and infected specimens had distinct cutaneous bacterial community structures. Phylotypes belonging to the genera Janthinobacterium, Pseudomonas, and Flavobacterium were more abundant, and sometimes almost exclusively present, in uninfected than in infected specimens. These bacterial populations, known to exhibit antifungal activity in amphibians, may also play a role in protection against cutaneous infectious diseases caused by Amphibiocystidium parasites.


Subject(s)
Bacteria/isolation & purification , Mesomycetozoea Infections/parasitology , Mesomycetozoea/physiology , Microbiota , Ranidae/microbiology , Skin Diseases/veterinary , Skin/microbiology , Animals , Bacteria/classification , Bacteria/genetics , Molecular Sequence Data , Phylogeny , Ranidae/parasitology , Skin/parasitology , Skin Diseases/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...