Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 283(50): 34864-72, 2008 Dec 12.
Article in English | MEDLINE | ID: mdl-18922802

ABSTRACT

Prostasin (also called channel activating protease-1 (CAP1)) is an extracellular serine protease implicated in the modulation of fluid and electrolyte regulation via proteolysis of the epithelial sodium channel. Several disease states, particularly hypertension, can be affected by modulation of epithelial sodium channel activity. Thus, understanding the biochemical function of prostasin and developing specific agents to inhibit its activity could have a significant impact on a widespread disease. We report the expression of the prostasin proenzyme in Escherichia coli as insoluble inclusion bodies, refolding and activating via proteolytic removal of the N-terminal propeptide. The refolded and activated enzyme was shown to be pure and monomeric, with kinetic characteristics very similar to prostasin expressed from eukaryotic systems. Active prostasin was crystallized, and the structure was determined to 1.45 A resolution. These apoprotein crystals were soaked with nafamostat, allowing the structure of the inhibited acyl-enzyme intermediate structure to be determined to 2.0 A resolution. Comparison of the inhibited and apoprotein forms of prostasin suggest a mechanism of regulation through stabilization of a loop which interferes with substrate recognition.


Subject(s)
Hypertension/metabolism , Serine Endopeptidases/chemistry , Amino Acid Sequence , Apoproteins/chemistry , Benzamidines , Crystallography, X-Ray/methods , Escherichia coli/metabolism , Guanidines/chemistry , Humans , Molecular Conformation , Molecular Sequence Data , Protein Conformation , Protein Folding , Protein Renaturation , Sequence Homology, Amino Acid , Serine Endopeptidases/genetics , Substrate Specificity
2.
Methods Mol Biol ; 434: 25-36, 2008.
Article in English | MEDLINE | ID: mdl-18470637

ABSTRACT

The broad application of recombinant adenoviruses to the development of vaccines and gene therapy vectors has encouraged the development of molecular assays for the facile quantitation of adenoviral particles and the assignment of their infectious potency. The Genome Quantitation Assay (GQA) and the QPCR-Based Potency Assay (QPA) developed for adenoviruses offer the attributes of precision, rapidity, and high throughput either performed manually or facilitated by simple automated liquid handling systems. These assay attributes allow for accelerated process development support and product characterization and release. The assays for adenovirus could offer the additional advantage in that their quantitation is based on viral replication independent of cytopathology permitting quantitation of serotypes that cause minimal cytopathic effect (CPE) in 293 cells and specificity that allows the components of multivalent vaccines to be discriminated and quantitated for release.


Subject(s)
Adenoviridae/genetics , Genetic Vectors/isolation & purification , Polymerase Chain Reaction/methods , Cell Line/virology , DNA, Viral/analysis , DNA, Viral/genetics , Humans , Kidney/metabolism , Virus Replication
3.
Vaccine ; 23(36): 4500-8, 2005 Aug 22.
Article in English | MEDLINE | ID: mdl-16002190

ABSTRACT

The assignment of infectious potency to test articles of adenovirus has been conducted mainly using classical end-point dilution methods, which rely on virus induced cytopathology to reveal the presence of infectious virus. These assays suffer the disadvantages of labor intensity, duration, throughput restriction and variability. In the course of our development of an Ad5 based HIV vaccine for clinical evaluation, we sought a facile method for the assignment of potency to the numerous test articles generated during the development of bioprocesses for bulk manufacture, downstream purification and formulation. In this paper we describe a quantitative PCR based potency assay (QPA) which uses QPCR to quantitate adenovirus genomes replicated 24h after the inoculation of a test article on 293 cell monolayers, and then relates that mass to potency by interpolation to a standard curve of replicated adenovirus genomes constructed with a reference adenovirus standard to which infectious potency has been previously assigned in the classical end-point dilution assay. The QPA assay for adenovirus is simple and rapid, with a throughput capacity adequate to the potency assay demands of bioprocess development, and with a precision expressed as a root variability of 16.8% R.S.D., allowing for close discriminations of the products of alternative process configurations. The adenovirus QPA principle can be applied to the quantitation of infectious potency of both RNA and DNA viruses and we report briefly on the development of QPA assays for measles and mumps. QPA assays owing to their simplicity and easy automation, rapidity, capacity and precision hold promise to become widely practiced methods for the quantitation of the potency of live virus vaccines and other recombinant virus vectors.


Subject(s)
Adenoviridae/genetics , Adenoviridae/isolation & purification , Genetic Vectors , Polymerase Chain Reaction/methods , Cell Line , DNA, Viral/analysis , Genetic Therapy , Humans , Measles virus/isolation & purification , Mumps virus/isolation & purification , Vaccines, Synthetic
4.
Assay Drug Dev Technol ; 3(6): 661-74, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16438661

ABSTRACT

As many processes in the preclinical drug discovery process become highly parallel, the need to also produce a large number of different proteins in parallel has become acute, such as for protein crystallization and activity screening. In turn, the requisite DNA constructions to produce these proteins must now be done at a rate that requires automated cloning procedures, each with an intrinsic low failure probability per sample. The high-throughput cloning solutions presented here achieve production of 192 different expression plasmids at a success rate of greater than 95% of the targeted open reading frames. Time for completion of the set by one person is reduced to approximately 11 working days, starting with polymerase chain reactions for a number of source clones and ending with purified expression plasmids. Achievement of this throughput utilizes the following: (1) the Beckman Coulter (Fullerton, CA) Biomek FX liquid handler for most manipulations, (2) Gateway cloning technology (Invitrogen Corp., Carlsbad, CA), and (3) computer programs designed for parallel processing of all sample information, including primer design and the resulting DNA and protein sequence assembly. Exemplary data are presented for discovery of a form of the Rho-kinase that crystallizes (ROCK2).


Subject(s)
Cloning, Molecular/methods , Plasmids/metabolism , Protein Serine-Threonine Kinases/biosynthesis , Robotics , Software , Automation , Crystallization , Drug Evaluation, Preclinical/methods , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/genetics , Mutagenesis , Plasmids/biosynthesis , Polymerase Chain Reaction , Protein Conformation , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Robotics/instrumentation , Time Factors , rho-Associated Kinases
SELECTION OF CITATIONS
SEARCH DETAIL
...