Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
FEMS Yeast Res ; 22(1)2022 04 08.
Article in English | MEDLINE | ID: mdl-35266531

ABSTRACT

The first committed step in the leucine biosynthetic pathway is catalyzed by α-isopropylmalate synthase (α-IPMS, EC 2.3.3.13), which in the Saccaromycotina subphylum of Ascomycete yeasts is frequently encoded by duplicated genes. Following a gene duplication event, the two copies may be preserved presumably because the encoded proteins diverge in either functional properties and/or cellular localization. The genome of the petite-negative budding yeast Lachancea kluyveri includes two SAKL0E10472 (LkLEU4) and SAKL0F05170 g (LkLEU4BIS) paralogous genes, which are homologous to other yeast α-IPMS sequences. Here, we investigate whether these paralogous genes encode functional α-IPMS isozymes and whether their functions have diverged. Molecular phylogeny suggested that the LkLeu4 isozyme is located in the mitochondria and LkLeu4BIS in the cytosol. Comparison of growth rates, leucine intracellular pools and mRNA levels, indicate that the LkLeu4 isozyme is the predominant α-IPMS enzyme during growth on glucose as carbon source. Determination of the kinetic parameters indicates that the isozymes have similar affinities for the substrates and for the feedback inhibitor leucine. Thus, the diversification of the physiological roles of the genes LkLEU4 and LkLEU4BIS involves preferential transcription of the LkLEU4 gene during growth on glucose and different subcellular localization, although ligand interactions have not diverged.


Subject(s)
2-Isopropylmalate Synthase , Saccharomycetales , 2-Isopropylmalate Synthase/chemistry , 2-Isopropylmalate Synthase/genetics , 2-Isopropylmalate Synthase/metabolism , Glucose/metabolism , Isoenzymes/genetics , Isoenzymes/metabolism , Leucine/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomycetales/metabolism
2.
G3 (Bethesda) ; 11(7)2021 07 14.
Article in English | MEDLINE | ID: mdl-33768233

ABSTRACT

Lager beer is made with the hybrid Saccharomyces pastorianus. Many publicly available S. pastorianus genome assemblies are highly fragmented due to the difficulties of assembling hybrid genomes, such as the presence of homeologous chromosomes from both parental types, and translocations between them. To improve the assembly of a previously sequenced lager yeast hybrid Saccharomyces sp. 790 and elucidate its genome structure, we proposed the use of alternative experimental evidence. We determined the phylogenetic position of Saccharomyces sp. 790 and established it as S. pastorianus 790. Then, we obtained from this yeast a bacterial artificial chromosome (BAC) genomic library with its BAC-end sequences (BESs). To analyze these data, we developed a pipeline (applicable to other assemblies) that classifies BES pairs alignments according to their orientation. For the case of S. pastorianus 790, paired-end BESs alignments validated parts of the assembly and unpaired-end ones suggested contig joins or misassemblies. Importantly, the BACs library was preserved and used for verification experiments. Unpaired-end alignments were used to upgrade the previous assembly and provided an improved detection of translocations. With this, we proposed a genome structure of S. pastorianus 790, which was similar to that of other lager yeasts; however, when we estimated chromosome copy number and experimentally measured its genome size, we discovered that one key difference is the outstanding S. pastorianus 790 ploidy level (allopentaploid). Altogether, our results show the value of combining bioinformatic analyses with experimental data such as long-insert clone information to improve a short-read assembly of a hybrid genome.


Subject(s)
Beer , Genome, Fungal , Beer/microbiology , Phylogeny , Hybridization, Genetic , Chromosomes , Clone Cells , Fermentation
3.
Biochim Biophys Acta Mol Cell Res ; 1864(3): 451-462, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27965115

ABSTRACT

Genetic deletion of the essential GTPase Gpn1 or replacement of the endogenous gene by partial loss of function mutants in yeast is associated with multiple cellular phenotypes, including in all cases a marked cytoplasmic retention of RNA polymerase II (RNAPII). Global inhibition of RNAPII-mediated transcription due to malfunction of Gpn1 precludes the identification and study of other cellular function(s) for this GTPase. In contrast to the single Gpn protein present in Archaea, eukaryotic Gpn1 possesses an extension of approximately 100 amino acids at the C-terminal end of the GTPase domain. To determine the importance of this C-terminal extension in Saccharomyces cerevisiae Gpn1, we generated yeast strains expressing either C-terminal truncated (gpn1ΔC) or full-length ScGpn1. We found that ScGpn1ΔC was retained in the cell nucleus, an event physiologically relevant as gpn1ΔC cells contained a higher nuclear fraction of the RNAPII CTD phosphatase Rtr1. gpn1ΔC cells displayed an increased size, a delay in mitosis exit, and an increased sensitivity to the microtubule polymerization inhibitor benomyl at the cell proliferation level and two cellular events that depend on microtubule function: RNAPII nuclear targeting and vacuole integrity. These phenotypes were not caused by inhibition of RNAPII, as in gpn1ΔC cells RNAPII nuclear targeting and transcriptional activity were unaffected. These data, combined with our description here of a genetic interaction between GPN1 and BIK1, a microtubule plus-end tracking protein with a mitotic function, strongly suggest that the ScGpn1 C-terminal tail plays a critical role in microtubule dynamics and mitotic progression in an RNAPII-independent manner.


Subject(s)
Cell Nucleus/metabolism , Gene Expression Regulation, Fungal , Microtubules/metabolism , Monomeric GTP-Binding Proteins/genetics , RNA Polymerase II/genetics , Saccharomyces cerevisiae Proteins/genetics , Benomyl/pharmacology , Microbial Viability , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Microtubules/ultrastructure , Monomeric GTP-Binding Proteins/metabolism , Protein Domains , RNA Polymerase II/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/ultrastructure , Saccharomyces cerevisiae Proteins/metabolism , Sequence Deletion , Signal Transduction , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription, Genetic , Tubulin Modulators/pharmacology , Vacuoles/metabolism
4.
Fungal Genet Biol ; 85: 71-82, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26563416

ABSTRACT

Branched chain amino acid aminotransferases (BCATs) catalyze the last step of the biosynthesis and the first step of the catabolism of branched chain amino acids. In Saccharomyces cerevisiae, BCATs are encoded by the ScBAT1 and ScBAT2 paralogous genes. Analysis of Lachancea kluyveri genome sequence, allowed the identification of the LkBAT1 locus, which could presumably encode a BCAT. A second unlinked locus (LkBAT1bis), exhibiting sequence similarity to LkBAT1 was also identified. To determine the function of these putative BCATs, L. kluyveri mutant strains lacking LkBAT1, LkBAT1bis or both genes were generated and tested for VIL metabolism. LkBat1 displayed branched chain aminotransferase activity and is required for VIL biosynthesis and catabolism. However, Lkbat1Δ mutant is a valine and isoleucine auxotroph and a leucine bradytroph indicating that L. kluyveri harbors an alternative enzyme(s) involved in leucine biosynthesis. Additionally, heterologous reciprocal gene complementation between S. cerevisiae and L. kluyveri orthologous LkBAT1, ScBAT1 and ScBAT2 genes, confirmed that the mitochondrial LkBat1 functions as BCAT in S. cerevisiae, restoring wild type phenotype to the ScBAT1 null mutant. Conversely, LkBAT1bis did not display a role in BCAAs metabolism. However, when ethanol was used as carbon source, deletion of LkBAT1bis in an Lkbat1Δ null strain resulted in an extended 'lag' growth phase, pointing to a potential function of LkBAT1 and LkBAT1bis in the aerobic metabolism of L. kluyveri. These results confirm the BCAT function of LkBAT1 in L. kluyveri, and further support the proposition that the BCAT function in ancestral-type yeasts has been distributed in the two paralogous genes present in S. cerevisiae.


Subject(s)
Saccharomycetales/enzymology , Transaminases/metabolism , Amino Acids, Branched-Chain/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Isoleucine/genetics , Isoleucine/metabolism , Leucine/genetics , Leucine/metabolism , Mitochondria/metabolism , Saccharomycetales/genetics , Transaminases/genetics , Valine/genetics , Valine/metabolism
5.
Eukaryot Cell ; 7(5): 814-25, 2008 May.
Article in English | MEDLINE | ID: mdl-18375620

ABSTRACT

We characterized the oxidative stress response of Candida glabrata to better understand the virulence of this fungal pathogen. C. glabrata could withstand higher concentrations of H(2)O(2) than Saccharomyces cerevisiae and even Candida albicans. Stationary-phase cells were extremely resistant to oxidative stress, and this resistance was dependent on the concerted roles of stress-related transcription factors Yap1p, Skn7p, and Msn4p. We showed that growing cells of C. glabrata were able to adapt to high levels of H(2)O(2) and that this adaptive response was dependent on Yap1p and Skn7p and partially on the general stress transcription factors Msn2p and Msn4p. C. glabrata has a single catalase gene, CTA1, which was absolutely required for resistance to H(2)O(2) in vitro. However, in a mouse model of systemic infection, a strain lacking CTA1 showed no effect on virulence.


Subject(s)
Candida glabrata/metabolism , Candida glabrata/pathogenicity , Candidiasis/microbiology , Catalase/metabolism , Oxidative Stress , Transcription Factors/metabolism , Amino Acid Sequence , Animals , Candida albicans/drug effects , Candida albicans/genetics , Candida albicans/growth & development , Candida glabrata/drug effects , Candida glabrata/growth & development , Catalase/chemistry , Catalase/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Humans , Hydrogen Peroxide/pharmacology , Mice , Mice, Inbred BALB C , Molecular Sequence Data , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Sequence Alignment , Sequence Deletion , Transcription Factors/genetics , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...