Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Breast Cancer Res ; 26(1): 25, 2024 02 07.
Article in English | MEDLINE | ID: mdl-38326868

ABSTRACT

BACKGROUND: There is increasing evidence that artificial intelligence (AI) breast cancer risk evaluation tools using digital mammograms are highly informative for 1-6 years following a negative screening examination. We hypothesized that algorithms that have previously been shown to work well for cancer detection will also work well for risk assessment and that performance of algorithms for detection and risk assessment is correlated. METHODS: To evaluate our hypothesis, we designed a case-control study using paired mammograms at diagnosis and at the previous screening visit. The study included n = 3386 women from the OPTIMAM registry, that includes mammograms from women diagnosed with breast cancer in the English breast screening program 2010-2019. Cases were diagnosed with invasive breast cancer or ductal carcinoma in situ at screening and were selected if they had a mammogram available at the screening examination that led to detection, and a paired mammogram at their previous screening visit 3y prior to detection when no cancer was detected. Controls without cancer were matched 1:1 to cases based on age (year), screening site, and mammography machine type. Risk assessment was conducted using a deep-learning model designed for breast cancer risk assessment (Mirai), and three open-source deep-learning algorithms designed for breast cancer detection. Discrimination was assessed using a matched area under the curve (AUC) statistic. RESULTS: Overall performance using the paired mammograms followed the same order by algorithm for risk assessment (AUC range 0.59-0.67) and detection (AUC 0.81-0.89), with Mirai performing best for both. There was also a correlation in performance for risk and detection within algorithms by cancer size, with much greater accuracy for large cancers (30 mm+, detection AUC: 0.88-0.92; risk AUC: 0.64-0.74) than smaller cancers (0 to < 10 mm, detection AUC: 0.73-0.86, risk AUC: 0.54-0.64). Mirai was relatively strong for risk assessment of smaller cancers (0 to < 10 mm, risk, Mirai AUC: 0.64 (95% CI 0.57 to 0.70); other algorithms AUC 0.54-0.56). CONCLUSIONS: Improvements in risk assessment could stem from enhancing cancer detection capabilities of smaller cancers. Other state-of-the-art AI detection algorithms with high performance for smaller cancers might achieve relatively high performance for risk assessment.


Subject(s)
Breast Neoplasms , Female , Humans , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/epidemiology , Artificial Intelligence , Case-Control Studies , Mammography , Algorithms , Early Detection of Cancer , Retrospective Studies
2.
Lancet Digit Health ; 6(1): e44-e57, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38071118

ABSTRACT

BACKGROUND: Artificial intelligence (AI) systems for automated chest x-ray interpretation hold promise for standardising reporting and reducing delays in health systems with shortages of trained radiologists. Yet, there are few freely accessible AI systems trained on large datasets for practitioners to use with their own data with a view to accelerating clinical deployment of AI systems in radiology. We aimed to contribute an AI system for comprehensive chest x-ray abnormality detection. METHODS: In this retrospective cohort study, we developed open-source neural networks, X-Raydar and X-Raydar-NLP, for classifying common chest x-ray findings from images and their free-text reports. Our networks were developed using data from six UK hospitals from three National Health Service (NHS) Trusts (University Hospitals Coventry and Warwickshire NHS Trust, University Hospitals Birmingham NHS Foundation Trust, and University Hospitals Leicester NHS Trust) collectively contributing 2 513 546 chest x-ray studies taken from a 13-year period (2006-19), which yielded 1 940 508 usable free-text radiological reports written by the contemporary assessing radiologist (collectively referred to as the "historic reporters") and 1 896 034 frontal images. Chest x-rays were labelled using a taxonomy of 37 findings by a custom-trained natural language processing (NLP) algorithm, X-Raydar-NLP, from the original free-text reports. X-Raydar-NLP was trained on 23 230 manually annotated reports and tested on 4551 reports from all hospitals. 1 694 921 labelled images from the training set and 89 238 from the validation set were then used to train a multi-label image classifier. Our algorithms were evaluated on three retrospective datasets: a set of exams sampled randomly from the full NHS dataset reported during clinical practice and annotated using NLP (n=103 328); a consensus set sampled from all six hospitals annotated by three expert radiologists (two independent annotators for each image and a third consultant to facilitate disagreement resolution) under research conditions (n=1427); and an independent dataset, MIMIC-CXR, consisting of NLP-annotated exams (n=252 374). FINDINGS: X-Raydar achieved a mean AUC of 0·919 (SD 0·039) on the auto-labelled set, 0·864 (0·102) on the consensus set, and 0·842 (0·074) on the MIMIC-CXR test, demonstrating similar performance to the historic clinical radiologist reporters, as assessed on the consensus set, for multiple clinically important findings, including pneumothorax, parenchymal opacification, and parenchymal mass or nodules. On the consensus set, X-Raydar outperformed historical reporter balanced accuracy with significance on 27 of 37 findings, was non-inferior on nine, and inferior on one finding, resulting in an average improvement of 13·3% (SD 13·1) to 0·763 (0·110), including a mean 5·6% (13·2) improvement in critical findings to 0·826 (0·119). INTERPRETATION: Our study shows that automated classification of chest x-rays under a comprehensive taxonomy can achieve performance levels similar to those of historical reporters and exhibit robust generalisation to external data. The open-sourced neural networks can serve as foundation models for further research and are freely available to the research community. FUNDING: Wellcome Trust.


Subject(s)
Artificial Intelligence , Image Interpretation, Computer-Assisted , Neural Networks, Computer , Humans , Retrospective Studies , X-Rays
3.
Radiol Artif Intell ; 5(6): e230019, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38074779

ABSTRACT

Purpose: To train an explainable deep learning model for patient reidentification in chest radiograph datasets and assess changes in model-perceived patient identity as a marker for emerging radiologic abnormalities in longitudinal image sets. Materials and Methods: This retrospective study used a set of 1 094 537 frontal chest radiographs and free-text reports from 259 152 patients obtained from six hospitals between 2006 and 2019, with validation on the public ChestX-ray14, CheXpert, and MIMIC-CXR datasets. A deep learning model was trained for patient reidentification and assessed on patient identity confirmation, retrieval of patient images from a database based on a query image, and radiologic abnormality prediction in longitudinal image sets. The representation learned was incorporated into a generative adversarial network, allowing visual explanations of the relevant features. Performance was evaluated with sensitivity, specificity, F1 score, Precision at 1, R-Precision, and area under the receiver operating characteristic curve (AUC) for normal and abnormal prediction. Results: Patient reidentification was achieved with a mean F1 score of 0.996 ± 0.001 (2 SD) on the internal test set (26 152 patients) and F1 scores of 0.947-0.993 on the external test data. Database retrieval yielded a mean Precision at 1 score of 0.976 ± 0.005 at 299 × 299 resolution on the internal test set and Precision at 1 scores between 0.868 and 0.950 on the external datasets. Patient sex, age, weight, and other factors were identified as key model features. The model achieved an AUC of 0.73 ± 0.01 for abnormality prediction versus an AUC of 0.58 ± 0.01 for age prediction error. Conclusion: The image features used by a deep learning patient reidentification model for chest radiographs corresponded to intuitive human-interpretable characteristics, and changes in these identifying features over time may act as markers for an emerging abnormality.Keywords: Conventional Radiography, Thorax, Feature Detection, Supervised Learning, Convolutional Neural Network, Principal Component Analysis Supplemental material is available for this article. © RSNA, 2023See also the commentary by Raghu and Lu in this issue.

4.
NPJ Digit Med ; 6(1): 223, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38017184

ABSTRACT

It is uncommon for risk groups defined by statistical or artificial intelligence (AI) models to be chosen by jointly considering model performance and potential interventions available. We develop a framework to rapidly guide choice of risk groups in this manner, and apply it to guide breast cancer screening intervals using an AI model. Linear programming is used to define risk groups that minimize expected advanced cancer incidence subject to resource constraints. In the application risk stratification performance is estimated from a case-control study (2044 cases, 1:1 matching), and other parameters are taken from screening trials and the screening programme in England. Under the model, re-screening in 1 year for the highest 4% AI model risk, in 3 years for the middle 64%, and in 4 years for 32% of the population at lowest risk, was expected to reduce the number of advanced cancers diagnosed by approximately 18 advanced cancers per 1000 diagnosed with triennial screening, for the same average number of screens in the population as triennial screening for all. Sensitivity analyses found the choice of thresholds was robust to model parameters, but the estimated reduction in advanced cancers was not precise and requires further evaluation. Our framework helps define thresholds with the greatest chance of success for reducing the population health burden of cancer when used in risk-adapted screening, which should be further evaluated such as in health-economic modelling based on computer simulation models, and real-world evaluations.

5.
Radiology ; 307(5): e222679, 2023 06.
Article in English | MEDLINE | ID: mdl-37310244

ABSTRACT

Background Accurate breast cancer risk assessment after a negative screening result could enable better strategies for early detection. Purpose To evaluate a deep learning algorithm for risk assessment based on digital mammograms. Materials and Methods A retrospective observational matched case-control study was designed using the OPTIMAM Mammography Image Database from the National Health Service Breast Screening Programme in the United Kingdom from February 2010 to September 2019. Patients with breast cancer (cases) were diagnosed following a mammographic screening or between two triannual screening rounds. Controls were matched based on mammography device, screening site, and age. The artificial intelligence (AI) model only used mammograms at screening before diagnosis. The primary objective was to assess model performance, with a secondary objective to assess heterogeneity and calibration slope. The area under the receiver operating characteristic curve (AUC) was estimated for 3-year risk. Heterogeneity according to cancer subtype was assessed using a likelihood ratio interaction test. Statistical significance was set at P < .05. Results Analysis included patients with screen-detected (median age, 60 years [IQR, 55-65 years]; 2044 female, including 1528 with invasive cancer and 503 with ductal carcinoma in situ [DCIS]) or interval (median age, 59 years [IQR, 53-65 years]; 696 female, including 636 with invasive cancer and 54 with DCIS) breast cancer and 1:1 matched controls, each with a complete set of mammograms at the screening preceding diagnosis. The AI model had an overall AUC of 0.68 (95% CI: 0.66, 0.70), with no evidence of a significant difference between interval and screen-detected (AUC, 0.69 vs 0.67; P = .085) cancer. The calibration slope was 1.13 (95% CI: 1.01, 1.26). There was similar performance for the detection of invasive cancer versus DCIS (AUC, 0.68 vs 0.66; P = .057). The model had higher performance for advanced cancer risk (AUC, 0.72 ≥stage II vs 0.66

Subject(s)
Breast Neoplasms , Carcinoma, Intraductal, Noninfiltrating , Humans , Female , Middle Aged , Breast Neoplasms/diagnostic imaging , Artificial Intelligence , Case-Control Studies , Retrospective Studies , State Medicine
6.
IEEE Trans Med Imaging ; 42(1): 3-14, 2023 01.
Article in English | MEDLINE | ID: mdl-36044487

ABSTRACT

Multi-class segmentation of cardiac magnetic resonance (CMR) images seeks a separation of data into anatomical components with known structure and configuration. The most popular CNN-based methods are optimised using pixel wise loss functions, ignorant of the spatially extended features that characterise anatomy. Therefore, whilst sharing a high spatial overlap with the ground truth, inferred CNN-based segmentations can lack coherence, including spurious connected components, holes and voids. Such results are implausible, violating anticipated anatomical topology. In response, (single-class) persistent homology-based loss functions have been proposed to capture global anatomical features. Our work extends these approaches to the task of multi-class segmentation. Building an enriched topological description of all class labels and class label pairs, our loss functions make predictable and statistically significant improvements in segmentation topology using a CNN-based post-processing framework. We also present (and make available) a highly efficient implementation based on cubical complexes and parallel execution, enabling practical application within high resolution 3D data for the first time. We demonstrate our approach on 2D short axis and 3D whole heart CMR segmentation, advancing a detailed and faithful analysis of performance on two publicly available datasets.


Subject(s)
Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Heart/diagnostic imaging
7.
Brain Behav Immun Health ; 26: 100539, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36388138

ABSTRACT

Introduction: More than 1 in 10 people are thought to experience a mental health problem during adolescence, with most adult psychopathology beginning during this time. Experiences of stress or adversity during childhood are important risk factors for poorer mental health outcomes and are also associated with alterations in neurodevelopment. There is evidence to suggest that this relationship is mediated by inflammation and the immune system. The eBRAIN study (The Impact of Early Adversity on Trajectories of Brain Maturation and Mental Health in Young Adolescents) will assess how early life adversity might affect trajectories of brain development throughout adolescence, whether these neurobiological changes are associated with psychopathology, and if they can potentially be explained by an activation of the immune system. Methods: A cohort of 220 adolescents between the ages of 11-14 will be recruited into this study. Each participant will complete three study visits, each one year apart, at the Institute of Psychiatry, Psychology and Neuroscience, King's College London, London (UK). At each study visit, they will be assessed with structural and functional MRI scans, biological sample collection as well as questionnaires and interviews to collect demographic information, assess experiences of adversity, and details of psychopathology. The study will also collect information about factors such as diet and nutrition, physical exercise, and cognition. Ethics and dissemination: Ethical approval for this study has been received by King's College London Research Ethics Committee (REC reference: HR-18/19-9033). Findings from the study will be published in peer-reviewed journals and disseminated at national and international conferences. Patient and public involvement (PPI) is an important component of the study, 'Study Champions' recruited from participants, their parents and teachers at collaborating schools have been invited to take an active role in study governance and dissemination.

8.
Psychol Med ; 52(10): 1817-1837, 2022 07.
Article in English | MEDLINE | ID: mdl-35730541

ABSTRACT

Maternal experiences of childhood adversity can increase the risk of emotional and behavioural problems in their children. This systematic review and meta-analysis provide the first narrative and quantitative synthesis of the mediators and moderators involved in the link between maternal childhood adversity and children's emotional and behavioural development. We searched EMBASE, PsycINFO, Medline, Cochrane Library, grey literature and reference lists. Studies published up to February 2021 were included if they explored mediators or moderators between maternal childhood adversity and their children's emotional and behavioural development. Data were synthesised narratively and quantitatively by meta-analytic approaches. The search yielded 781 articles, with 74 full-text articles reviewed, and 41 studies meeting inclusion criteria. Maternal mental health was a significant individual-level mediator, while child traumatic experiences and insecure maternal-child attachment were consistent family-level mediators. However, the evidence for community-level mediators was limited. A meta-analysis of nine single-mediating analyses from five studies indicated three mediating pathways: maternal depression, negative parenting practices and maternal insecure attachment, with pooled indirect standardised effects of 0.10 [95% CI (0.03-0.17)), 0.01 (95% CI (-0.02 to 0.04)] and 0.07 [95% CI (0.01-0.12)], respectively. Research studies on moderators were few and identified some individual-level factors, such as child sex (e.g. the mediating role of parenting practices being only significant in girls), biological factors (e.g. maternal cortisol level) and genetic factors (e.g. child's serotonin-transporter genotype). In conclusion, maternal depression and maternal insecure attachment are two established mediating pathways that can explain the link between maternal childhood adversity and their children's emotional and behavioural development and offer opportunities for intervention.


Subject(s)
Adverse Childhood Experiences , Female , Child , Humans , Emotions , Child Rearing , Mental Health , Family
9.
Neural Comput Appl ; 32(11): 6735-6744, 2020.
Article in English | MEDLINE | ID: mdl-32523256

ABSTRACT

The automatic analysis of ultrasound sequences can substantially improve the efficiency of clinical diagnosis. This article presents an attempt to automate the challenging task of measuring the vascular diameter of the fetal abdominal aorta from ultrasound images. We propose a neural network architecture consisting of three blocks: a convolutional neural network (CNN) for the extraction of imaging features, a convolution gated recurrent unit (C-GRU) for exploiting the temporal redundancy of the signal, and a regularized loss function, called CyclicLoss, to impose our prior knowledge about the periodicity of the observed signal. The solution is investigated with a cohort of 25 ultrasound sequences acquired during the third-trimester pregnancy check, and with 1000 synthetic sequences. In the extraction of features, it is shown that a shallow CNN outperforms two other deep CNNs with both the real and synthetic cohorts, suggesting that echocardiographic features are optimally captured by a reduced number of CNN layers. The proposed architecture, working with the shallow CNN, reaches an accuracy substantially superior to previously reported methods, providing an average reduction of the mean squared error from 0.31 (state-of-the-art) to 0.09 mm 2 , and a relative error reduction from 8.1 to 5.3%. The mean execution speed of the proposed approach of 289 frames per second makes it suitable for real-time clinical use.

10.
Article in English | MEDLINE | ID: mdl-34109327

ABSTRACT

With respect to spatial overlap, CNN-based segmentation of short axis cardiovascular magnetic resonance (CMR) images has achieved a level of performance consistent with inter observer variation. However, conventional training procedures frequently depend on pixel-wise loss functions, limiting optimisation with respect to extended or global features. As a result, inferred segmentations can lack spatial coherence, including spurious connected components or holes. Such results are implausible, violating the anticipated topology of image segments, which is frequently known a priori. Addressing this challenge, published work has employed persistent homology, constructing topological loss functions for the evaluation of image segments against an explicit prior. Building a richer description of segmentation topology by considering all possible labels and label pairs, we extend these losses to the task of multi-class segmentation. These topological priors allow us to resolve all topological errors in a subset of 150 examples from the ACDC short axis CMR training data set, without sacrificing overlap performance.

12.
Radiology ; 291(1): 196-202, 2019 04.
Article in English | MEDLINE | ID: mdl-30667333

ABSTRACT

Purpose To develop and test an artificial intelligence (AI) system, based on deep convolutional neural networks (CNNs), for automated real-time triaging of adult chest radiographs on the basis of the urgency of imaging appearances. Materials and Methods An AI system was developed by using 470 388 fully anonymized institutional adult chest radiographs acquired from 2007 to 2017. The free-text radiology reports were preprocessed by using an in-house natural language processing (NLP) system modeling radiologic language. The NLP system analyzed the free-text report to prioritize each radiograph as critical, urgent, nonurgent, or normal. An AI system for computer vision using an ensemble of two deep CNNs was then trained by using labeled radiographs to predict the clinical priority from radiologic appearances only. The system's performance in radiograph prioritization was tested in a simulation by using an independent set of 15 887 radiographs. Prediction performance was assessed with the area under the receiver operating characteristic curve; sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were also determined. Nonparametric testing of the improvement in time to final report was determined at a nominal significance level of 5%. Results Normal chest radiographs were detected by our AI system with a sensitivity of 71%, specificity of 95%, PPV of 73%, and NPV of 94%. The average reporting delay was reduced from 11.2 to 2.7 days for critical imaging findings (P < .001) and from 7.6 to 4.1 days for urgent imaging findings (P < .001) in the simulation compared with historical data. Conclusion Automated real-time triaging of adult chest radiographs with use of an artificial intelligence system is feasible, with clinically acceptable performance. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Auffermann in this issue.


Subject(s)
Radiography, Thoracic/statistics & numerical data , Triage/methods , Adult , Artificial Intelligence , Deep Learning , Humans , Neural Networks, Computer , ROC Curve , Retrospective Studies , Sensitivity and Specificity , Triage/standards
13.
Med Image Anal ; 53: 26-38, 2019 04.
Article in English | MEDLINE | ID: mdl-30660946

ABSTRACT

Machine learning approaches hold great potential for the automated detection of lung nodules on chest radiographs, but training algorithms requires very large amounts of manually annotated radiographs, which are difficult to obtain. The increasing availability of PACS (Picture Archiving and Communication System), is laying the technological foundations needed to make available large volumes of clinical data and images from hospital archives. Binary labels indicating whether a radiograph contains a pulmonary lesion can be extracted at scale, using natural language processing algorithms. In this study, we propose two novel neural networks for the detection of chest radiographs containing pulmonary lesions. Both architectures make use of a large number of weakly-labelled images combined with a smaller number of manually annotated x-rays. The annotated lesions are used during training to deliver a type of visual attention feedback informing the networks about their lesion localisation performance. The first architecture extracts saliency maps from high-level convolutional layers and compares the inferred position of a lesion against the true position when this information is available; a localisation error is then back-propagated along with the softmax classification error. The second approach consists of a recurrent attention model that learns to observe a short sequence of smaller image portions through reinforcement learning; the reward function penalises the exploration of areas, within an image, that are unlikely to contain nodules. Using a repository of over 430,000 historical chest radiographs, we present and discuss the proposed methods over related architectures that use either weakly-labelled or annotated images only.


Subject(s)
Diagnosis, Computer-Assisted/methods , Lung Diseases/diagnostic imaging , Neural Networks, Computer , Radiographic Image Interpretation, Computer-Assisted/methods , Radiography, Thoracic , Algorithms , Datasets as Topic , Humans
14.
Nat Commun ; 9(1): 1227, 2018 03 26.
Article in English | MEDLINE | ID: mdl-29581425

ABSTRACT

Understanding the unique contributions of frontoparietal networks (FPN) in cognition is challenging because they overlap spatially and are co-activated by diverse tasks. Characterizing these networks therefore involves studying their activation across many different cognitive tasks, which previously was only possible with meta-analyses. Here, we use neuroadaptive Bayesian optimization, an approach combining real-time analysis of functional neuroimaging data with machine-learning, to discover cognitive tasks that segregate ventral and dorsal FPN activity. We identify and subsequently refine two cognitive tasks, Deductive Reasoning and Tower of London, which maximally dissociate the dorsal from ventral FPN. We subsequently investigate these two FPNs in the context of a wider range of FPNs and demonstrate the importance of studying the whole activity profile across tasks to uniquely differentiate any FPN. Our findings deviate from previous meta-analyses and hypothesized functional labels for these FPNs. Taken together the results form the starting point for a neurobiologically-derived cognitive taxonomy.


Subject(s)
Adaptation, Physiological , Bayes Theorem , Cognition/physiology , Frontal Lobe/physiology , Nerve Net/physiology , Parietal Lobe/physiology , Adult , Brain Mapping , Female , Humans , Male , Meta-Analysis as Topic , Neuropsychological Tests , Young Adult
15.
Proc Natl Acad Sci U S A ; 114(52): 13744-13749, 2017 12 26.
Article in English | MEDLINE | ID: mdl-29229843

ABSTRACT

Preterm infants show abnormal structural and functional brain development, and have a high risk of long-term neurocognitive problems. The molecular and cellular mechanisms involved are poorly understood, but novel methods now make it possible to address them by examining the relationship between common genetic variability and brain endophenotype. We addressed the hypothesis that variability in the Peroxisome Proliferator Activated Receptor (PPAR) pathway would be related to brain development. We employed machine learning in an unsupervised, unbiased, combined analysis of whole-brain diffusion tractography together with genomewide, single-nucleotide polymorphism (SNP)-based genotypes from a cohort of 272 preterm infants, using Sparse Reduced Rank Regression (sRRR) and correcting for ethnicity and age at birth and imaging. Empirical selection frequencies for SNPs associated with cerebral connectivity ranged from 0.663 to zero, with multiple highly selected SNPs mapping to genes for PPARG (six SNPs), ITGA6 (four SNPs), and FXR1 (two SNPs). SNPs in PPARG were significantly overrepresented (ranked 7-11 and 67 of 556,000 SNPs; P < 2.2 × 10-7), and were mostly in introns or regulatory regions with predicted effects including protein coding and nonsense-mediated decay. Edge-centric graph-theoretic analysis showed that highly selected white-matter tracts were consistent across the group and important for information transfer (P < 2.2 × 10-17); they most often connected to the insula (P < 6 × 10-17). These results suggest that the inhibited brain development seen in humans exposed to the stress of a premature extrauterine environment is modulated by genetic factors, and that PPARG signaling has a previously unrecognized role in cerebral development.


Subject(s)
Brain/diagnostic imaging , Connectome , Diffusion Tensor Imaging , Infant, Premature , Machine Learning , PPAR gamma/genetics , Polymorphism, Single Nucleotide , Female , Humans , Infant, Newborn , Integrin alpha6/genetics , Male , RNA-Binding Proteins/genetics
16.
PLoS One ; 12(11): e0185973, 2017.
Article in English | MEDLINE | ID: mdl-29140996

ABSTRACT

The WHO estimates around a million children contract tuberculosis (TB) annually with over 80 000 deaths from dissemination of infection outside of the lungs. The insidious onset and association with skin test anergy suggests failure of the immune system to both recognise and respond to infection. To understand the immune mechanisms, we studied genome-wide whole blood RNA expression in children with TB meningitis (TBM). Findings were validated in a second cohort of children with TBM and pulmonary TB (PTB), and functional T-cell responses studied in a third cohort of children with TBM, other extrapulmonary TB (EPTB) and PTB. The predominant RNA transcriptional response in children with TBM was decreased abundance of multiple genes, with 140/204 (68%) of all differentially regulated genes showing reduced abundance compared to healthy controls. Findings were validated in a second cohort with concordance of the direction of differential expression in both TBM (r2 = 0.78 p = 2x10-16) and PTB patients (r2 = 0.71 p = 2x10-16) when compared to a second group of healthy controls. Although the direction of expression of these significant genes was similar in the PTB patients, the magnitude of differential transcript abundance was less in PTB than in TBM. The majority of genes were involved in activation of leucocytes (p = 2.67E-11) and T-cell receptor signalling (p = 6.56E-07). Less abundant gene expression in immune cells was associated with a functional defect in T-cell proliferation that recovered after full TB treatment (p<0.0003). Multiple genes involved in T-cell activation show decreased abundance in children with acute TB, who also have impaired functional T-cell responses. Our data suggest that childhood TB is associated with an acquired immune defect, potentially resulting in failure to contain the pathogen. Elucidation of the mechanism causing the immune paresis may identify new treatment and prevention strategies.


Subject(s)
RNA, Messenger/blood , T-Lymphocytes/metabolism , Tuberculosis/immunology , Adolescent , Case-Control Studies , Child , Child, Preschool , Cohort Studies , Cytokines/genetics , Female , Gene Expression Profiling , Humans , Male , Reverse Transcriptase Polymerase Chain Reaction , Tuberculosis/genetics
17.
Neuroimage ; 163: 115-124, 2017 12.
Article in English | MEDLINE | ID: mdl-28765056

ABSTRACT

Machine learning analysis of neuroimaging data can accurately predict chronological age in healthy people. Deviations from healthy brain ageing have been associated with cognitive impairment and disease. Here we sought to further establish the credentials of 'brain-predicted age' as a biomarker of individual differences in the brain ageing process, using a predictive modelling approach based on deep learning, and specifically convolutional neural networks (CNN), and applied to both pre-processed and raw T1-weighted MRI data. Firstly, we aimed to demonstrate the accuracy of CNN brain-predicted age using a large dataset of healthy adults (N = 2001). Next, we sought to establish the heritability of brain-predicted age using a sample of monozygotic and dizygotic female twins (N = 62). Thirdly, we examined the test-retest and multi-centre reliability of brain-predicted age using two samples (within-scanner N = 20; between-scanner N = 11). CNN brain-predicted ages were generated and compared to a Gaussian Process Regression (GPR) approach, on all datasets. Input data were grey matter (GM) or white matter (WM) volumetric maps generated by Statistical Parametric Mapping (SPM) or raw data. CNN accurately predicted chronological age using GM (correlation between brain-predicted age and chronological age r = 0.96, mean absolute error [MAE] = 4.16 years) and raw (r = 0.94, MAE = 4.65 years) data. This was comparable to GPR brain-predicted age using GM data (r = 0.95, MAE = 4.66 years). Brain-predicted age was a heritable phenotype for all models and input data (h2 ≥ 0.5). Brain-predicted age showed high test-retest reliability (intraclass correlation coefficient [ICC] = 0.90-0.99). Multi-centre reliability was more variable within high ICCs for GM (0.83-0.96) and poor-moderate levels for WM and raw data (0.51-0.77). Brain-predicted age represents an accurate, highly reliable and genetically-influenced phenotype, that has potential to be used as a biomarker of brain ageing. Moreover, age predictions can be accurately generated on raw T1-MRI data, substantially reducing computation time for novel data, bringing the process closer to giving real-time information on brain health in clinical settings.


Subject(s)
Aging , Brain/diagnostic imaging , Image Processing, Computer-Assisted/methods , Machine Learning , Neural Networks, Computer , Adolescent , Adult , Aged , Aged, 80 and over , Aging/pathology , Brain/pathology , Female , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Phenotype , Young Adult
18.
BMC Cancer ; 17(1): 392, 2017 06 02.
Article in English | MEDLINE | ID: mdl-28578690

ABSTRACT

BACKGROUND: Tyrosine kinase inhibitors are the first line standard of care for treatment of metastatic renal cell carcinoma (RCC). Accurate response assessment in the setting of antiangiogenic therapies remains suboptimal as standard size-related response criteria do not necessarily accurately reflect clinical benefit, as they may be less pronounced or occur later in therapy than devascularisation. The challenge for imaging is providing timely assessment of disease status allowing therapies to be tailored to ensure ongoing clinical benefit. We propose that combined assessment of morphological, physiological and metabolic imaging parameters using 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging (18F-FDG PET/MRI) will better reflect disease behaviour, improving assessment of response/non-response/relapse. METHODS/DESIGN: The REMAP study is a single-centre prospective observational study. Eligible patients with metastatic renal cell carcinoma, planned for systemic therapy, with at least 2 lesions will undergo an integrated 18F-FDG PET and MRI whole body imaging with diffusion weighted and contrast-enhanced multiphasic as well as standard anatomical MRI sequences at baseline, 12 weeks and 24 weeks of systemic therapy allowing 18F-FDG standardised uptake value (SUV), apparent diffusion co-efficient (ADC) and normalised signal intensity (SI) parameters to be obtained. Standard of care contrast-enhanced computed tomography CT scans will be performed at equivalent time-points. CT response categorisation will be performed using RECIST 1.1 and alternative (modified)Choi and MASS criteria. The reference standard for disease status will be by consensus panel taking into account clinical, biochemical and conventional imaging parameters. Intra- and inter-tumoural heterogeneity in vascular, diffusion and metabolic response/non-response will be assessed by image texture analysis. Imaging will also inform the development of computational methods for automated disease status categorisation. DISCUSSION: The REMAP study will demonstrate the ability of integrated 18F-FDG PET-MRI to provide a more personalised approach to therapy. We suggest that 18F-FDG PET/MRI will provide superior sensitivity and specificity in early response/non-response categorisation when compared to standard CT (using RECIST 1.1 and alternative (modified)Choi or MASS criteria) thus facilitating more timely and better informed treatment decisions. TRIAL REGISTRATION: The trial is approved by the Southeast London Research Ethics Committee reference 16/LO/1499 and registered on the NIHR clinical research network portfolio ISRCTN12114913 .


Subject(s)
Carcinoma, Renal Cell/diagnostic imaging , Carcinoma, Renal Cell/drug therapy , Neoplasm Metastasis/diagnostic imaging , Neoplasm Metastasis/drug therapy , Adult , Aged , Axitinib , Bevacizumab/administration & dosage , Carcinoma, Renal Cell/pathology , Cell Proliferation/drug effects , Contrast Media/administration & dosage , Female , Fluorodeoxyglucose F18/administration & dosage , Humans , Imidazoles/administration & dosage , Indazoles/administration & dosage , Indoles/administration & dosage , London , Male , Middle Aged , Multimodal Imaging , Neoplasm Metastasis/pathology , Neoplasms, Second Primary/diagnostic imaging , Neoplasms, Second Primary/pathology , Positron-Emission Tomography , Pyrimidines/administration & dosage , Pyrroles/administration & dosage , Sulfonamides/administration & dosage , Sunitinib , Treatment Outcome
19.
Front Comput Neurosci ; 11: 14, 2017.
Article in English | MEDLINE | ID: mdl-28373838

ABSTRACT

An exciting avenue of neuroscientific research involves quantifying the time-varying properties of functional connectivity networks. As a result, many methods have been proposed to estimate the dynamic properties of such networks. However, one of the challenges associated with such methods involves the interpretation and visualization of high-dimensional, dynamic networks. In this work, we employ graph embedding algorithms to provide low-dimensional vector representations of networks, thus facilitating traditional objectives such as visualization, interpretation and classification. We focus on linear graph embedding methods based on principal component analysis and regularized linear discriminant analysis. The proposed graph embedding methods are validated through a series of simulations and applied to fMRI data from the Human Connectome Project.

20.
Sci Rep ; 7: 45885, 2017 04 19.
Article in English | MEDLINE | ID: mdl-28422179

ABSTRACT

The human face is a complex trait under strong genetic control, as evidenced by the striking visual similarity between twins. Nevertheless, heritability estimates of facial traits have often been surprisingly low or difficult to replicate. Furthermore, the construction of facial phenotypes that correspond to naturally perceived facial features remains largely a mystery. We present here a large-scale heritability study of face geometry that aims to address these issues. High-resolution, three-dimensional facial models have been acquired on a cohort of 952 twins recruited from the TwinsUK registry, and processed through a novel landmarking workflow, GESSA (Geodesic Ensemble Surface Sampling Algorithm). The algorithm places thousands of landmarks throughout the facial surface and automatically establishes point-wise correspondence across faces. These landmarks enabled us to intuitively characterize facial geometry at a fine level of detail through curvature measurements, yielding accurate heritability maps of the human face (www.heritabilitymaps.info).


Subject(s)
Face/anatomy & histology , Image Processing, Computer-Assisted , Imaging, Three-Dimensional , Algorithms , Cohort Studies , Face/diagnostic imaging , Female , Humans , Middle Aged , Phenotype , Twins
SELECTION OF CITATIONS
SEARCH DETAIL
...