Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Phenomics ; 5: 0061, 2023.
Article in English | MEDLINE | ID: mdl-37363144

ABSTRACT

To predict oil and phenol concentrations in olive fruit, the combination of back propagation neural networks (BPNNs) and contact-less plant phenotyping techniques was employed to retrieve RGB image-based digital proxies of oil and phenol concentrations. Fruits of cultivars (×3) differing in ripening time were sampled (~10-day interval, ×2 years), pictured and analyzed for phenol and oil concentrations. Prior to this, fruit samples were pictured and images were segmented to extract the red (R), green (G), and blue (B) mean pixel values that were rearranged in 35 RGB-based colorimetric indexes. Three BPNNs were designed using as input variables (a) the original 35 RGB indexes, (b) the scores of principal components after a principal component analysis (PCA) pre-processing of those indexes, and (c) a reduced number (28) of the RGB indexes achieved after a sparse PCA. The results show that the predictions reached the highest mean R2 values ranging from 0.87 to 0.95 (oil) and from 0.81 to 0.90 (phenols) across the BPNNs. In addition to the R2, other performance metrics were calculated (root mean squared error and mean absolute error) and combined into a general performance indicator (GPI). The resulting rank of the GPI suggests that a BPNN with a specific topology might be designed for cultivars grouped according to their ripening period. The present study documented that an RGB-based image phenotyping can effectively predict key quality traits in olive fruit supporting the developing olive sector within a digital agriculture domain.

2.
AoB Plants ; 13(4): plab027, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34316336

ABSTRACT

Xylella fastidiosa is a xylem-limited bacterium causing the Olive Quick Decline Syndrome, which is currently devastating the agricultural landscape of Southern Italy. The bacterium is injected into the xylem vessels of leaf petioles after the penetration of the insect vector's stylet. From here, it is supposed to colonize the xylem vasculature moving against water flow inside conductive vessels. Widespread vessel clogging following the bacterial infection and causing the failure of water transport seemed not to fully supported by the recent empirical xylem anatomical observations in infected olive trees. We tested the hypothesis that the higher susceptibility to the X. fastidiosa's infection in Cellina di Nardò compared with Leccino is associated to the higher vulnerability to air embolism of its larger vessels. Such hypothesis is motivated by the recognized ability of X. fastidiosa in degrading pit membranes and also because air embolism would possibly provide microenvironmental conditions more favourable to its more efficient aerobic metabolism. We revised the relevant literature on bacterium growth and xylem physiology, and carried out empirical field, mid-summer measurements of xylem anatomy and native embolism in olive cultivars with high (Cellina di Nardò) and low susceptibility (Leccino) to the infection by X. fastidiosa. Both cultivars had similar shoot mass traits and vessel length (~80 cm), but the highly susceptible one had larger vessels and a lower number of vessels supplying a given leaf mass. Native air embolism reduced mean xylem hydraulic conductance by ~58 % (Cellina di Nardò) and ~38 % (Leccino). The higher air-embolism vulnerability of the larger vessels in Cellina di Nardò possibly facilitates the X. fastidiosa's infection compared to Leccino. Some important characteristics of the vector-pathogen-plant interactions still require deep investigations acknowledging both the pathogen metabolic pathways and the biophysical principles of xylem hydraulics.

3.
Front Plant Sci ; 11: 595, 2020.
Article in English | MEDLINE | ID: mdl-32499808

ABSTRACT

Many plants can modify their leaf profile rapidly in response to environmental stress. Image-based data are increasingly used to retrieve reliable information on plant water status in a non-contact manner that has the potential to be scaled to high-throughput and repeated through time. This paper examined the variation of leaf angle as measured by both 3D images and goniometer in progressively drought stressed grapevine. Grapevines, grown in pots, were subjected to a 21-day period of drought stress receiving 100% (CTRL), 60% (IRR 60%) and 30% (IRR 30%) of maximum soil available water capacity. Leaf angle was (i) measured manually (goniometer) and (ii) computed by a 3D reconstruction method (multi-view stereo and structure from motion). Stomatal conductance, leaf water potential, fluorescence (F v /F m ), leaf area and 2D RGB data were simultaneously collected during drought imposition. Throughout the experiment, values of leaf water potential ranged from -0.4 (CTRL) to -1.1 MPa (IRR 30%) and it linearly influenced the leaf angle when measured manually (R 2 = 0.86) and with 3D image (R 2 = 0.73). Drought was negatively related to stomatal conductance and leaf area growth particularly in IRR 30% while photosynthetic parameters (i.e., F v /F m ) were not impaired by water restriction. A model for leaf area estimation based on the number of pixels of 2D RGB images developed at a different phenotyping robotized platform in a closely related experiment was successfully employed (R 2 = 0.78). At the end of the experiment, top view 2D RGB images showed a ∼50% reduction of greener fraction (GGF) in CTRL and IRR 60% vines compared to initial values, while GGF in IRR 30% increased by approximately 20%.

4.
J Plant Physiol ; 181: 67-74, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-25982084

ABSTRACT

Accumulation of Ca in several fleshy fruit is often supposed to depend, among others, by climatic variables driving fruit transpiration. This study tests the whole causal chain hypothesis: VPD → fruit transpiration → Ca accumulation. Also there are evidences that relationship between fruit transpiration and Ca content is not always clear, hence the hypothesis that low VPD reduces the fraction of xylemic water destined to transpiration was tested by examining the water budget of fruit. Attached fruits of Actinidia deliciosa were subjected to Low (L) and High (H) VPD. Their transpiration was measured from early after fruit-set to day 157 after full bloom (DAFB). Fruits were picked at 70, 130 and 157 DAFB for Ca and K determinations and for water budget analysis. Cumulative transpired water was ∼ 70 g and ∼ 16 g H2O f(-1) in HVPD and LVPD, respectively. Calcium accumulated linearly (R(2) = 0.71) with cumulative transpiration when VPD was high, while correlation was weaker (R(2) = 0.24) under LVPD. Under low VPD the fraction of xylem stream destined to transpiration declined to 40-50%. Results suggest that Ca accumulation is coupled to cumulative transpiration under high VPD because under that condition cumulative transpiration equals xylem stream (which carry the nutrient). At LVPD, Ca gain by fruit is uncoupled from transpiration because ∼ 60% of the xylemic water is needed to sustain fruit growth. Results will apply to most fruits (apples, tomatoes, capsicum, grapes etc.) since most suffer Ca deficiency disorders and grow in changing environments with variable VPD, also they could be supportive for the implementation of fruit quality models accounting also for mineral compositions and for a reinterpretation of certain field practices aimed at naturally improve fruit Ca content.


Subject(s)
Actinidia/physiology , Calcium/metabolism , Fruit/physiology , Plant Transpiration/physiology , Fruit/growth & development , Vapor Pressure , Water/metabolism
5.
Ann Bot ; 112(1): 197-205, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23658370

ABSTRACT

BACKGROUND AND AIMS: Xylem flows into most fruits decline as the fruit develop, with important effects on mineral and carbohydrate accumulation. It has been hypothesized that an increase in xylem hydraulic resistance (RT) contributes to this process. This study examined changes in RT that occur during development of the berry of kiwifruit (Actinidia deliciosa), identified the region within the fruit where changes were occurring, and tested whether a decrease in irradiance during fruit development caused an increase in RT, potentially contributing to decreased mineral accumulation in shaded fruit. METHODS: RT was measured using pressure chamber and flow meter methods, the two methods were compared, and the flow meter was also used to partition RT between the pedicel, receptacle and proximal and distal portions of the berry. Dye was used as a tracer for xylem function. Artificial shading was used to test the effect of light on RT, dye entry and mineral accumulation. KEY RESULTS: RT decreased during the early phase of rapid fruit growth, but increased again as the fruit transitioned to a final period of slower growth. The most significant changes in resistance occurred in the receptacle, which initially contributed 20 % to RT, increasing to 90 % later in development. Dye also ceased moving beyond the receptacle from 70 d after anthesis. The two methods for measuring RT agreed in terms of the direction and timing of developmental changes in RT, but pressure chamber measurements were consistently higher than flow meter estimates of RT, prompting questions regarding which method is most appropriate for measuring fruit RT. Shading had no effect on berry growth but increased RT and decreased dye movement and calcium concentration. CONCLUSIONS: Increased RT in the receptacle zone coincides with slowing fresh weight growth, reduced transpiration and rapid starch accumulation by the fruit. Developmental changes in RT may be connected to changes in phloem functioning and the maintenance of water potential gradients between the stem and the fruit. The effect of shade on RT extends earlier reports that shading can affect fruit vascular differentiation, xylem flows and mineral accumulation independently of effects on transpiration.


Subject(s)
Actinidia/growth & development , Fruit/physiology , Xylem/physiology , Coloring Agents/analysis , Coloring Agents/pharmacokinetics , Fruit/growth & development , Light
6.
AoB Plants ; 2012: pls036, 2012.
Article in English | MEDLINE | ID: mdl-23136639

ABSTRACT

BACKGROUND AND AIMS: In most fruit crops, storage quality varies greatly between regions and seasons, causing significant commercial loss. Understanding the sources of this variability will contribute to the knowledge of fruit developmental physiology and may also benefit commercial fruit production via altered managements that reduce it or forecasts that predict it. A causal-chain relationship is proposed to help elucidate the sources of variability in fruit storage quality: the weather →(i)→ fruit transpiration →(ii)→ fruit calcium →(iii)→ fruit storage quality. This paper explores the first link of this hypothesis, →(i)→, for Hayward kiwifruit using field measurements of fruit transpiration rate and concurrent meteorological recordings. The aims are to identify the key environmental variables driving fruit transpiration and develop a predictive fruit transpiration model. METHODOLOGY: Fruit transpiration was determined hourly over several 24-h periods by recording weight loss of detached fruit, on Days 23, 35, 49, 65, 94 and 140 after full bloom. Meteorological records were made every 15 min throughout the season at an adjacent regional weather station. A model of fruit transpiration was developed in which the usual meteorological variables (radiation, temperature, windspeed and relative humidity) were incorporated in a Fick's Law transpiration flux equation. PRINCIPAL RESULTS: Fruit transpiration rate (i.e. the molar flux density, mmol cm(-2) h(-1)) varied diurnally and decreased during the season. The dominant fruit variable governing transpiration rate was skin conductance and the dominant environmental variables were relative humidity and temperature. Radiation and windspeed were not significantly influential. CONCLUSIONS: The model provides a good fit to the fruit transpiration rate measurements regardless of the time of day/night or the stage of fruit development. The model allows reasonably accurate and continuous predictions of fruit transpiration rate throughout fruit development based on standard meteorological recordings. It also allows estimates of cumulative fruit transpiration throughout the season.

7.
Tree Physiol ; 26(2): 179-85, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16356914

ABSTRACT

We evaluated the osmotic adjustment capacity of leaves and roots of young olive (Olea europaea L.) trees during a period of water deficit and subsequent rewatering. The trials were carried out in Basilicata (40 degrees 24' N, 16 degrees 48' E) on 2-year-old self-rooted olive plants (cv. 'Coratina'). Plants were subjected to one of four drought treatments. After 13 days of drought, plants reached mean predawn leaf water potentials of -0.45 +/- 0.015 MPa (control), -1.65 +/- 0.021 (low stress), -3.25 +/- 0.035 (medium stress) and -5.35 +/- 0.027 MPa (high stress). Total osmotic adjustment increased with increasing severity of drought stress. Trees in the high stress treatment showed total osmotic adjustments ranging between 2.4 MPa at 0500 h and 3.8 MPa at 1800 h on the last day of the drought period. Osmotic adjustment allowed the leaves to reach leaf water potentials of about -7.0 MPa. Active osmotic adjustment at predawn decreased during the rewatering period in both leaves and roots. Stomatal conductance and net photosynthetic rate declined with increasing drought stress. Osmotic adjustment in olive trees was associated with active and passive osmotic regulation of drought tolerance, providing an important mechanism for avoiding water loss.


Subject(s)
Olea/physiology , Plant Leaves/physiology , Plant Roots/physiology , Water/metabolism , Adaptation, Physiological/physiology , Dehydration , Osmosis/physiology , Photosynthesis/physiology , Plant Transpiration/physiology , Pressure , Soil/analysis , Time Factors , Water/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...