Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Cell Host Microbe ; 31(2): 305-319.e10, 2023 02 08.
Article in English | MEDLINE | ID: mdl-36634679

ABSTRACT

Malaria transmission to mosquitoes requires a developmental switch in asexually dividing blood-stage parasites to sexual reproduction. In Plasmodium berghei, the transcription factor AP2-G is required and sufficient for this switch, but how a particular sex is determined in a haploid parasite remains unknown. Using a global screen of barcoded mutants, we here identify genes essential for the formation of either male or female sexual forms and validate their importance for transmission. High-resolution single-cell transcriptomics of ten mutant parasites portrays the developmental bifurcation and reveals a regulatory cascade of putative gene functions in the determination and subsequent differentiation of each sex. A male-determining gene with a LOTUS/OST-HTH domain as well as the protein interactors of a female-determining zinc-finger protein indicate that germ-granule-like ribonucleoprotein complexes complement transcriptional processes in the regulation of both male and female development of a malaria parasite.


Subject(s)
Culicidae , Malaria , Parasites , Animals , Female , Male , Parasites/metabolism , Malaria/parasitology , Plasmodium berghei/genetics , Sexual Development/genetics , Culicidae/parasitology , Protozoan Proteins/genetics , Protozoan Proteins/metabolism
2.
Front Cell Infect Microbiol ; 13: 1287355, 2023.
Article in English | MEDLINE | ID: mdl-38173794

ABSTRACT

Plasmodium falciparum parasites have a complex life cycle, but the most clinically relevant stage of the disease is the invasion of erythrocytes and the proliferation of the parasite in the blood. The influence of human genetic traits on malaria has been known for a long time, however understanding the role of the proteins involved is hampered by the anuclear nature of erythrocytes that makes them inaccessible to genetic tools. Here we overcome this limitation using stem cells to generate erythroid cells with an in-vitro differentiation protocol and assess parasite invasion with an adaptation of flow cytometry to detect parasite hemozoin. We combine this strategy with reprogramming of patient cells to Induced Pluripotent Stem Cells and genome editing to understand the role of key genes and human traits in malaria infection. We show that deletion of basigin ablates invasion while deletion of ATP2B4 has a minor effect and that erythroid cells from reprogrammed patient-derived HbBart α-thalassemia samples poorly support infection. The possibility to obtain patient-secific and genetically modifed erythoid cells offers an unparalleled opportunity to study the role of human genes and polymorphisms in malaria allowing preservation of the genomic background to demonstrate their function and understand their mechanisms.


Subject(s)
Malaria, Falciparum , Malaria , Humans , Malaria, Falciparum/parasitology , Plasmodium falciparum/genetics , Malaria/parasitology , Erythrocytes/parasitology , Stem Cells
3.
Sci Rep ; 10(1): 10894, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32616799

ABSTRACT

The recurrent emergence of drug resistance in Plasmodium falciparum increases the urgency to genetically validate drug resistance mechanisms and identify new targets. Reverse genetics have facilitated genome-scale knockout screens in Plasmodium berghei and Toxoplasma gondii, in which pooled transfections of multiple vectors were critical to increasing scale and throughput. These approaches have not yet been implemented in human malaria species such as P. falciparum and P. knowlesi, in part because the extent to which pooled transfections can be performed in these species remains to be evaluated. Here we use next-generation sequencing to quantitate uptake of a pool of 94 barcoded vectors. The distribution of vector acquisition allowed us to estimate the number of barcodes and DNA molecules taken up by the parasite population. Dilution cloning of P. falciparum transfectants showed that individual clones possess as many as seven episomal barcodes, revealing that an intake of multiple vectors is a frequent event despite the inefficient transfection efficiency. Transfection of three spectrally-distinct fluorescent reporters allowed us to evaluate different transfection methods and revealed that schizont-stage transfection limited the tendency for parasites to take up multiple vectors. In contrast to P. falciparum, we observed that the higher transfection efficiency of P. knowlesi resulted in near complete representation of the library. These findings have important implications for how reverse genetics can be scaled in culturable Plasmodium species.


Subject(s)
DNA, Recombinant/metabolism , Genetic Vectors/metabolism , Plasmids/metabolism , Plasmodium falciparum/metabolism , Transfection/methods , Biological Transport , Calmodulin/genetics , Clone Cells , DNA Barcoding, Taxonomic , Electroporation , Erythrocytes/parasitology , Flow Cytometry , Gene Library , Genetic Vectors/genetics , Humans , Luminescent Proteins/genetics , Plasmids/genetics , Plasmodium falciparum/genetics , Plasmodium falciparum/growth & development , Plasmodium knowlesi/genetics , Plasmodium knowlesi/growth & development , Plasmodium knowlesi/metabolism , Promoter Regions, Genetic , Species Specificity
4.
Sci Immunol ; 2(9)2017 Mar 03.
Article in English | MEDLINE | ID: mdl-28345074

ABSTRACT

Differentiation of naïve CD4+ T cells into functionally distinct T helper subsets is crucial for the orchestration of immune responses. Due to extensive heterogeneity and multiple overlapping transcriptional programs in differentiating T cell populations, this process has remained a challenge for systematic dissection in vivo. By using single-cell transcriptomics and computational analysis using a temporal mixtures of Gaussian processes model, termed GPfates, we reconstructed the developmental trajectories of Th1 and Tfh cells during blood-stage Plasmodium infection in mice. By tracking clonality using endogenous TCR sequences, we first demonstrated that Th1/Tfh bifurcation had occurred at both population and single-clone levels. Next, we identified genes whose expression was associated with Th1 or Tfh fates, and demonstrated a T-cell intrinsic role for Galectin-1 in supporting a Th1 differentiation. We also revealed the close molecular relationship between Th1 and IL-10-producing Tr1 cells in this infection. Th1 and Tfh fates emerged from a highly proliferative precursor that upregulated aerobic glycolysis and accelerated cell cycling as cytokine expression began. Dynamic gene expression of chemokine receptors around bifurcation predicted roles for cell-cell in driving Th1/Tfh fates. In particular, we found that precursor Th cells were coached towards a Th1 but not a Tfh fate by inflammatory monocytes. Thus, by integrating genomic and computational approaches, our study has provided two unique resources, a database www.PlasmoTH.org, which facilitates discovery of novel factors controlling Th1/Tfh fate commitment, and more generally, GPfates, a modelling framework for characterizing cell differentiation towards multiple fates.

5.
Nat Commun ; 7: 12134, 2016 07 11.
Article in English | MEDLINE | ID: mdl-27396388

ABSTRACT

The influence of signals perceived by immature B cells during their development in bone marrow on their subsequent functions as mature cells are poorly defined. Here, we show that bone marrow cells transiently stimulated in vivo or in vitro through the Toll-like receptor 9 generate proB cells (CpG-proBs) that interrupt experimental autoimmune encephalomyelitis (EAE) when transferred at the onset of clinical symptoms. Protection requires differentiation of CpG-proBs into mature B cells that home to reactive lymph nodes, where they trap T cells by releasing the CCR7 ligand, CCL19, and to inflamed central nervous system, where they locally limit immunopathogenesis through interleukin-10 production, thereby cooperatively inhibiting ongoing EAE. These data demonstrate that a transient inflammation at the environment, where proB cells develop, is sufficient to confer regulatory functions onto their mature B-cell progeny. In addition, these properties of CpG-proBs open interesting perspectives for cell therapy of autoimmune diseases.


Subject(s)
B-Lymphocytes, Regulatory/physiology , Bone Marrow Transplantation , Encephalomyelitis, Autoimmune, Experimental/therapy , Precursor Cells, B-Lymphoid/transplantation , Animals , B-Lymphocytes, Regulatory/cytology , Cell Differentiation , Cell Movement , Chemokine CCL19/physiology , Female , Interferon-gamma/metabolism , Interleukin-10/metabolism , Lymph Nodes/physiology , Mice, Inbred C57BL , Oligodeoxyribonucleotides , Precursor Cells, B-Lymphoid/physiology
6.
PLoS One ; 11(6): e0158238, 2016.
Article in English | MEDLINE | ID: mdl-27362409

ABSTRACT

The clinical complications of malaria are caused by the parasite expansion in the blood. Invasion of erythrocytes is a complex process that depends on multiple receptor-ligand interactions. Identification of host receptors is paramount for fighting the disease as it could reveal new intervention targets, but the enucleated nature of erythrocytes makes genetic approaches impossible and many receptors remain unknown. Host-parasite interactions evolve rapidly and are therefore likely to be species-specific. As a results, understanding of invasion receptors outside the major human pathogen Plasmodium falciparum is very limited. Here we use mouse embryonic stem cells (mESCs) that can be genetically engineered and differentiated into erythrocytes to identify receptors for the rodent malaria parasite Plasmodium berghei. Two proteins previously implicated in human malaria infection: glycophorin C (GYPC) and Band-3 (Slc4a1) were deleted in mESCs to generate stable cell lines, which were differentiated towards erythropoiesis. In vitro infection assays revealed that while deletion of Band-3 has no effect, absence of GYPC results in a dramatic decrease in invasion, demonstrating the crucial role of this protein for P. berghei infection. This stem cell approach offers the possibility of targeting genes that may be essential and therefore difficult to disrupt in whole organisms and has the potential to be applied to a variety of parasites in diverse host cell types.


Subject(s)
Anion Exchange Protein 1, Erythrocyte/deficiency , Glycophorins/deficiency , Mouse Embryonic Stem Cells/cytology , Plasmodium berghei/physiology , Animals , Anion Exchange Protein 1, Erythrocyte/metabolism , Cell Differentiation , Cell Line , Erythropoiesis , Glycophorins/metabolism , Host-Parasite Interactions , Mice , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/parasitology
8.
Genome Biol ; 17: 103, 2016 May 12.
Article in English | MEDLINE | ID: mdl-27176874

ABSTRACT

BACKGROUND: Differentiation of lymphocytes is frequently accompanied by cell cycle changes, interplay that is of central importance for immunity but is still incompletely understood. Here, we interrogate and quantitatively model how proliferation is linked to differentiation in CD4+ T cells. RESULTS: We perform ex vivo single-cell RNA-sequencing of CD4+ T cells during a mouse model of infection that elicits a type 2 immune response and infer that the differentiated, cytokine-producing cells cycle faster than early activated precursor cells. To dissect this phenomenon quantitatively, we determine expression profiles across consecutive generations of differentiated and undifferentiated cells during Th2 polarization in vitro. We predict three discrete cell states, which we verify by single-cell quantitative PCR. Based on these three states, we extract rates of death, division and differentiation with a branching state Markov model to describe the cell population dynamics. From this multi-scale modelling, we infer a significant acceleration in proliferation from the intermediate activated cell state to the mature cytokine-secreting effector state. We confirm this acceleration both by live imaging of single Th2 cells and in an ex vivo Th1 malaria model by single-cell RNA-sequencing. CONCLUSION: The link between cytokine secretion and proliferation rate holds both in Th1 and Th2 cells in vivo and in vitro, indicating that this is likely a general phenomenon in adaptive immunity.


Subject(s)
CD4-Positive T-Lymphocytes/cytology , Cell Differentiation , Cell Proliferation , Gene Expression Profiling/methods , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Animals , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/physiology , Cells, Cultured , Cytokines/genetics , Cytokines/metabolism , Female , Malaria/genetics , Mice , Mice, Inbred C57BL , Models, Biological , Transcriptome
9.
Methods Mol Biol ; 1371: 79-88, 2016.
Article in English | MEDLINE | ID: mdl-26530795

ABSTRACT

Control of T-cell responses can be achieved by several subsets of B cells with immunoregulatory functions, mostly acting by provision of the anti-inflammatory cytokine IL-10 or exhibiting killing properties through Fas ligand (Fas-L) or granzyme B-induced cell death. We herein describe the characterization as well as the cellular and molecular mechanisms mediating the suppressive properties of bone marrow immature innate pro-B cell progenitors that emerge upon transient activation of Toll-like receptor 9. They are licensed by activated T-cell-derived IFN-γ to become suppressive by up-regulating their Fas-L expression and inducing effector CD4(+) T-cell apoptosis. They also up-regulate their own IFN-γ production which dramatically reduces T-cell production of a major pathogenic cytokine, IL-21. A single adoptive transfer of as little as 60,000 of them efficiently prevents the onset of spontaneous type 1 diabetes in recipient nonobese diabetes (NOD) mice, highlighting the remarkable regulatory potency of these so-called CpG-proB cell progenitors compared to regulatory cells of diverse lineages so far described. The CpG-proB cell activity is prolonged in vivo by their differentiation after migration in the pancreas and the spleen into B-cell progeny with high Fas-L expression that can keep up inducing apoptosis of effector T cells in the long term.


Subject(s)
Immunity, Innate , Immunomodulation , Precursor Cells, B-Lymphoid/cytology , Precursor Cells, B-Lymphoid/physiology , Animals , Apoptosis/immunology , Cell Communication/immunology , Cell Differentiation/immunology , Cell Movement/immunology , Cytokines/metabolism , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/metabolism , Fas Ligand Protein/metabolism , Humans , Immune Tolerance , Lymphocyte Activation/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Toll-Like Receptors/metabolism
10.
J Immunol ; 191(5): 2266-72, 2013 Sep 01.
Article in English | MEDLINE | ID: mdl-23878314

ABSTRACT

G-CSF prevents type 1 diabetes in the NOD mouse by promoting the local recruitment of T regulatory cells (Tregs). This is an indirect effect because adoptive transfer of G-CSF-induced tolerogenic dendritic cells (DCs) promotes Treg accumulation. However, the identity of the particular DC subset and the molecule(s) mediating this effect remain unknown. We demonstrate in this study that the adoptive transfer of CD11c(high)CD8α(-) DCs isolated from pegylated G-CSF (pegG-CSF) recipients, but not that of other DC subtypes, enhanced the pancreatic recruitment of CD4(+)CD25(+)Foxp3(+) Tregs, which generated increased amounts of TGF-ß. Likewise, only CD11c(high)CD8α(-) DCs from pegG-CSF recipients secreted the chemokine CCL22 at levels that effectively attracted Tregs. PegG-CSF was more efficient at enhancing the synthesis of CCL22 by CD11c(high)CD8α(-) DCs from the pancreatic lymph nodes compared with those from the spleen. Accordingly, CD11c(high)CD8α(-) DCs from the pancreatic lymph nodes of pegG-CSF recipients were more efficient than their splenic counterparts in the recruitment of Tregs upon adoptive transfer. Predictably, CD11c(high)CD8α(-) DCs failed to recruit these Tregs both in vivo and in vitro following intracellular neutralization of CCL22. These data assign a key role to CD8α(-) DCs and CCL22 in Treg recruitment in the protection of NOD mice against type 1 diabetes following the treatment with G-CSF.


Subject(s)
Chemokine CCL2/immunology , Dendritic Cells/immunology , Diabetes Mellitus, Type 1/immunology , Granulocyte Colony-Stimulating Factor/pharmacology , T-Lymphocytes, Regulatory/immunology , Adoptive Transfer , Animals , CD8 Antigens/immunology , CD8 Antigens/metabolism , Chemokine CCL2/metabolism , Chemotaxis, Leukocyte/immunology , Dendritic Cells/metabolism , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Mice , Mice, Inbred NOD , Myeloid Cells/immunology , Myeloid Cells/metabolism , Reverse Transcriptase Polymerase Chain Reaction , T-Lymphocytes, Regulatory/metabolism
11.
Proc Natl Acad Sci U S A ; 110(24): E2199-208, 2013 Jun 11.
Article in English | MEDLINE | ID: mdl-23716674

ABSTRACT

Diverse hematopoietic progenitors, including myeloid populations arising in inflammatory and tumoral conditions and multipotent cells, mobilized by hematopoietic growth factors or emerging during parasitic infections, display tolerogenic properties. Innate immune stimuli confer regulatory functions to various mature B-cell subsets but immature B-cell progenitors endowed with suppressive properties per se or after differentiating into more mature regulatory B cells remain to be characterized. Herein we provide evidence for innate pro-B cells (CpG-proBs) that emerged within the bone marrow both in vitro and in vivo upon Toll-like receptor-9 activation and whose adoptive transfer protected nonobese diabetic mice against type 1 diabetes (T1D). These cells responded to IFN-γ released by activated effector T cells (Teffs), by up-regulating their Fas ligand (FasL) expression, which enabled them to kill Teffs through apoptosis. In turn, IFN-γ derived from CpG-proBs enhanced IFN-γ while dramatically reducing IL-21 production by Teffs. In keeping with the crucial pathogenic role played by IL-21 in T1D, adoptively transferred IFN-γ-deficient CpG-proBs did not prevent T1D development. Additionally, CpG-proBs matured in vivo into diverse pancreatic and splenic suppressive FasL(high) B-cell subsets. CpG-proBs may become instrumental in cell therapy of autoimmune diseases either on their own or as graft complement in autologous stem cell transplantation.


Subject(s)
Diabetes Mellitus, Type 1/immunology , Precursor Cells, B-Lymphoid/immunology , T-Lymphocytes/immunology , Toll-Like Receptor 9/immunology , Adoptive Transfer , Animals , Apoptosis/immunology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cell Proliferation , Diabetes Mellitus, Type 1/prevention & control , Fas Ligand Protein/immunology , Fas Ligand Protein/metabolism , Flow Cytometry , Immunity, Innate/drug effects , Immunity, Innate/immunology , Interferon-gamma/immunology , Interferon-gamma/metabolism , Interleukins/immunology , Interleukins/metabolism , Kaplan-Meier Estimate , Mice , Mice, Congenic , Mice, Inbred NOD , Mice, Knockout , Oligodeoxyribonucleotides/immunology , Oligodeoxyribonucleotides/pharmacology , Precursor Cells, B-Lymphoid/metabolism , Precursor Cells, B-Lymphoid/transplantation , T-Lymphocytes/metabolism , Toll-Like Receptor 9/agonists , Toll-Like Receptor 9/metabolism
12.
Blood ; 112(6): 2575-8, 2008 Sep 15.
Article in English | MEDLINE | ID: mdl-18617637

ABSTRACT

Mechanisms of protection against autoimmune diseases by transplantation of autologous hematopoietic progenitors remain poorly defined. We recently demonstrated that, unlike medullary hematopoietic stem cells (HSCs), mobilized hematopoietic progenitors (HPCs) stimulate peripheral Foxp3(+) regulatory T cell (Treg)-expansion through cell-contact activation of Notch signaling and through as yet undetermined soluble factor(s), distinct from TGF-beta1. Herein we identified one such soluble factor as granulocyte macrophage-colony stimulating factor (GM-CSF), which is produced at higher levels by HPCs than HSCs and whose neutralization significantly reduces the growth-promoting effect of HPCs on Treg. Treg express a functional GM-CSF receptor alpha-chain CD116 and proliferate in response to this cytokine independently from IL2. GM-CSF-expanded Treg-like HPC-expanded Treg-display enhanced suppressive capacity relative to control Treg. Hence, mobilized progenitors stimulate Treg expansion both by cell-contact dependent mechanisms and by their production of GM-CSF.


Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor/physiology , Hematopoietic Stem Cells/immunology , Immune Tolerance , Animals , Cell Communication , Cell Proliferation , Granulocyte-Macrophage Colony-Stimulating Factor/analysis , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Mice , Mice, Inbred NOD , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor , T-Lymphocytes, Regulatory/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...