Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Chemosphere ; 273: 128492, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33109358

ABSTRACT

This study evaluated the uptake and translocation of cerium nanoparticles (CeO2 NPs) and soluble Ce(NO3)3 by soybean plants (Glycine max L. Merrill) under the whole plant life-cycle and relevant environmental concentrations, 0.062 and 0.933 mg kg-1, which represent maximal values for 2017 in agricultural soils and sludge treated soils, respectively. The experiments were carried out using a nutrient solution. Cerium was detected in the soybean roots epidermis and cortex, leaves, and grains, but it neither impaired plant development nor grain yield. The concentration of Ce in the shoot increased as a function of time for plants treated with Ce(NO3)3, while it remained constant for plants treated with CeO2 NPs. It means that CeO2 NPs were absorbed in the same rate as biomass production, which suggests that they are taken up and transported by water mass flow. Single-particle inductively coupled plasma mass spectrometry revealed clusters of CeO2 NPs in leaves of plants treated with 25 nm CeO2 NPs (ca. 30-45 nm). The reprecipitation of soluble cerium from Ce(NO3)3 within the plant was not confirmed. Finally, bioconcentration factors above one were found for the lowest concentrated treatments. Since soybean is a widespread source of protein for animals, we draw attention to the importance of evaluating the effects of Ce entrance in the food chain and its possible biomagnification.


Subject(s)
Cerium , Fabaceae , Metal Nanoparticles , Nanoparticles , Oxides , Plant Roots , Glycine max
2.
Sci Rep ; 9(1): 10416, 2019 07 18.
Article in English | MEDLINE | ID: mdl-31320668

ABSTRACT

Understanding nanoparticle root uptake and root-to-shoot transport might contribute to the use of nanotechnology in plant nutrition. This study performed time resolved experiments to probe Zn uptake, biotransformation and physiological effects on Phaseolus vulgaris (L.). Plants roots were exposed to ZnO nanoparticles (40 and 300 nm) dispersions and ZnSO4(aq) (100 and 1000 mg Zn L-1) for 48 h. Near edge X-ray absorption spectroscopy showed that 40 nm ZnO was more easily dissolved by roots than 300 nm ZnO. It also showed that in the leaves Zn was found as a mixture Zn3(PO4)2 and Zn-histidine complex. X-ray fluorescence spectroscopy showed that root-to-shoot Zn-translocation presented a decreasing gradient of concentration and velocity, it seems radial Zn movement occurs simultaneously to the axial xylem transport. Below 100 mg Zn L-1, the lower stem tissue section served as a buffer preventing Zn from reaching the leaves. Conversely, it was not observed for 1000 mg Zn L-1 ZnSO4(aq). Transcriptional analysis of genes encoding metal carriers indicated higher expression levels of tonoplast-localized transporters, suggesting that the mechanism trend to accumulate Zn in the lower tissues may be associated with an enhanced of Zn compartmentalization in vacuoles. The photosynthetic rate, transpiration, and water conductance were impaired by treatments.


Subject(s)
Nanoparticles/metabolism , Phaseolus/metabolism , Plant Roots/metabolism , Plant Shoots/metabolism , Zinc Oxide/metabolism , Zinc/metabolism , Metals/metabolism , Phaseolus/genetics , Phaseolus/physiology , Photosynthesis/physiology , Plant Leaves/metabolism , Plant Leaves/physiology , Plant Roots/genetics , Plant Roots/physiology , Plant Shoots/physiology , Transcription, Genetic/genetics , X-Ray Absorption Spectroscopy/methods
SELECTION OF CITATIONS
SEARCH DETAIL