Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 31(9): 13185-13206, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38240971

ABSTRACT

To effectively remove pharmaceuticals, nitroaromatic compounds, and dyes from wastewater, an efficient multifunctional material was created based on silver nanoparticles (Ag) and MIL-125-NH2 (MOF) immobilized on viscose fibers (VF) as a support substrate. Firstly, silver nanoparticles (Ag) were immobilized on the surface of viscose fibers (VF) via in situ synthesis using trisodium citrate (TSC) as a reducing agent to create (VF-Ag). Then, VF and VF-Ag were decorated with the titanium metal-organic framework MIL-125-NH2 (MOF) to create VF-MOF and VF-Ag-MOF. The influence of VF-Ag, VF-MOF, and VF-Ag-MOF on the sonocatalytic or sonophotocatalytic degradation of sulfa drugs was investigated. The results show that VF-Ag-MOF showed excellent sonocatalytic and sonophotocatalytic activity towards the degradation of sulfa drugs compared to VF-Ag and VF-MOF. Furthermore, sonophotodegradation showed a dramatic enhancement in the efficiency of degradation of sulfa drugs compared to sonodegradation. The sonophotodegradation degradation percentage of sulfanilamide, sulfadiazine, and sulfamethazine drugs in the presence of VF-Ag-MOF was 65, 90, and 95 after 45 min of ultrasonic and visible light irradiation. The catalytic activity of VF-Ag, VF-MOF, and VF-Ag-MOF was evaluated through the conversion of p-nitrophenol (4-NP) to p-aminophenol (4-AP). The results demonstrate that VF-Ag-MOF had the highest catalytic activity, followed by VF-Ag and VF-MOF. The conversion percentage of 4-NP to 4-AP was 69%. The catalytic or photocatalytic effects of VF-Ag, VF-MOF, and VF-Ag-MOF on the elimination of methylene blue (MB) dye were investigated. The results demonstrate that VF-Ag-MOF showed high efficiency in removing the MB dye through the reduction (65%) or photodegradation (71%) after 60 min. VF-Ag-MOF composites structure-activity relationships represent that doping within silver NPs enhanced the photocatalytic activity of MIL-125-NH2, which could be explained as follows: (i) Due to the formation of a Schottky barrier at the junction between MIL-125-NH2 and Ag NPs, the photogenerated electrons in the conduction band of MIL-125-NH2 were supposed to be quickly transferred to the valence band of the Ag NPs, and subsequently, the electrons were transferred to the conduction band of Ag NPs. This considerable electron transferring process, which is reported as Z scheme heterojunction, can efficiently suppress the recombination of electron/hole pairs in VF-Ag-MIL-125-NH2 composites. (ii) Sufficient separation between the photogenerated charge carriers (holes and electrons) and avoiding their recombination enhanced the photocatalytic activity of composites.


Subject(s)
Metal Nanoparticles , Silver , Silver/chemistry , Metal Nanoparticles/chemistry , Titanium/chemistry , Light , Photolysis
2.
Int J Biol Macromol ; 256(Pt 1): 128419, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38013080

ABSTRACT

Chitosan-based aerogels were fabricated through utilizing of nanofibrillated cellulose (NFC)/CaCO3 composites. Chitosan aerogel and extra three aerogels loaded different concentrations of NFC/CaCO3 were investigated to explore their release efficiency of Tebuconazole pesticides. Results obtained from ATR-FTIR showed a remarkable decline of the characterized chitosan hydroxyl group peak prolonging with appearance of new peaks assigned to the inclusion of inorganic calcium element. Also, SEM images showed chitosan aerogel with regular porous structure increased by incorporation with of NFC/CaCO3 nanocomposite, while EDS affirmed the presence of calcium element rather pristine chitosan aerogel. In addition to this, the physical characterizations showed significant improvement in swelling properties for aerogels incorporated NFC/CaCO3 nanocomposite at low ratios. Chitosan aerogel reinforced NFC/CaCO3 nanocomposite exhibited benefit on loading and release efficiency of Tebuconazole. All samples showed accessibility to column release method with fastest release at low slow rate 2 mL/min as giving chance for diffusion and solubility of ingredient, while release increase as heat increase as result of pore expansion. In conclusion, chitosan aerogels incorporated calcium carbonate showed better-sustained release of Tebuconazole pesticides than pristine chitosan aerogel. The produced aerogels loaded NFC/CaCO3 nanocomposite could be promising for controlled release of pesticides at water-streams in agriculture sector.


Subject(s)
Chitosan , Nanocomposites , Pesticides , Triazoles , Chitosan/chemistry , Cellulose/chemistry , Calcium , Delayed-Action Preparations
3.
J Mater Chem B ; 11(30): 7144-7159, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37403540

ABSTRACT

Microbial infection is the most common obstacle in the wound healing process, leading to wound healing impairment and complications and ultimately increasing morbidity and mortality. Due to the rising number of pathogens evolving resistance to the existing antibiotics used for wound care, alternative approaches are urgently required. In this study, α-aminophosphonate derivatives as antimicrobial agents were synthesized and incorporated into self-crosslinked tri-component cryogels composed of fully hydrolyzed polyvinyl alcohol (PVA-F), partially hydrolyzed polyvinyl alcohol (PVA-P), and cellulose nanofibrils (CNFs). Initially, the antimicrobial activity of four α-aminophosphonate derivatives against selected skin bacterial species was tested and their minimum inhibitory concentration was determined based on which the most effective compound was loaded into the cryogels. Next, the physical and mechanical properties of cryogels with various blending ratios of PVA-P/PVA-F and fixed amounts of CNFs were assessed, and drug release profiles and biological activities of drug-loaded cryogels were analyzed. Assessment of α-aminophosphonate derivatives showed the highest efficacy of a cinnamaldehyde-based derivative (Cinnam) against both Gram-negative and Gram-positive bacteria compared to other derivatives. The physical and mechanical properties of cryogels showed that PVA-P/PVA-F with a 50/50 blending ratio had the highest swelling ratio (1600%), surface area (523 m2 g-1), and compression recoverability (72%) compared to that with other blending ratios. Finally, antimicrobial and biofilm development studies showed that the cryogel loaded with a Cinnam amount of 2 mg (relative to polymer weight) showed the most sustained drug release profile over 75 h and had the highest efficacy against Gram-negative and Gram-positive bacteria. In conclusion, self-crosslinked tri-component cryogels loaded with the synthesized α-aminophosphonate derivative, having both antimicrobial and anti-biofilm formation properties, can have a significant impact on the management of uprising wound infection.


Subject(s)
Anti-Infective Agents , Cryogels , Polyvinyl Alcohol , Cellulose , Bandages
4.
Polymers (Basel) ; 13(11)2021 Jun 03.
Article in English | MEDLINE | ID: mdl-34205186

ABSTRACT

In this study we developed electrospun cellulose acetate nanofibers (CANFs) that were loaded with a model non-steroidal anti-inflammatory drug (NSAID) (ibuprofen, Ib) and coated with poly(acrylamide) (poly-AAm) hydrogel polymer using two consecutive steps: an electrospinning process followed by photopolymerization of AAm. Coated and non-coated CANF formulations were characterized by several microscopic and spectroscopic techniques to evaluate their physicochemical properties. An analysis of the kinetic release profile of Ib showed noticeable differences due to the presence or absence of the poly-AAm hydrogel polymer. Poly-AAm coating facilitated a constant release rate of drug as opposed to a more conventional burst release. The non-coated CANFs showed low cumulative drug release concentrations (ca. 35 and 83% at 5 and 10% loading, respectively). Conversely, poly-AAm coated CANFs were found to promote the release of drug (ca. 84 and 99.8% at 5 and 10% loading, respectively). Finally, the CANFs were found to be superbly cytocompatible.

5.
Int J Biol Macromol ; 173: 203-210, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33484799

ABSTRACT

Nonwoven fabrics containing silver nanoparticles (AgNPs) are widely utilized to assist management of infected wounds and those at risk of infection. However, such materials have varied responses due to their chemical nature. Herein we investigated the correlation between the concentration of AgNPs taken up by nonwoven viscose material and antibacterial activity in a simulated wound fluid model against two bacterial models (i.e., Escherichia coli and Staphylococcus aureus). Thereafter, the developed nonwoven viscose containing AgNPs were independently coated with two polyacid carbohydrate polymers (i.e., carboxymethyl chitosan (CMCs), alginate (ALG)), and gelatin (GEL) protein in order to study their influence on the physical and biological attributes in vitro and in vivo. Intensive characterizations were utilized to monitor the physicochemical features of the developed nonwoven viscose. The results demonstrated that higher concentrations of AgNPs were taken up by viscose fabric whilewhile increasing AgNPs in the colloidal solution during padding process. Overall, the treated nonwoven fabric with and without polymers' coatings showed remarkable antibacterial activity against two bacterial models in vitro. As well as they achieved high and speed wound recovery in rats which was almost similar to commercial dermazin treatment. Therefore, it validates excellent nonwoven dressing clinically relevant to the wound type and condition.


Subject(s)
Burns, Chemical/drug therapy , Escherichia coli Infections/drug therapy , Metal Nanoparticles/chemistry , Silver/pharmacology , Staphylococcal Infections/drug therapy , Wound Healing/drug effects , Alginates/chemistry , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bandages , Burns, Chemical/microbiology , Carboxymethylcellulose Sodium/chemistry , Chitosan/analogs & derivatives , Chitosan/chemistry , Delayed-Action Preparations/chemistry , Escherichia coli/drug effects , Escherichia coli/growth & development , Escherichia coli Infections/microbiology , Gelatin/chemistry , Metal Nanoparticles/ultrastructure , Rats , Silver/chemistry , Skin/drug effects , Skin/microbiology , Staphylococcal Infections/microbiology , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development , Wound Healing/physiology
6.
Int J Biol Macromol ; 124: 659-666, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30500512

ABSTRACT

Chitosan-g-polyvinyl acetate (Cs-g-PVAc) was synthesized successfully using redox copolymerization using potassium persulfate as initiator. TiO2 and TiO2 doped ZnO which previously prepared by sol-gel technique added for preparing emulsion from polymer - metal oxide nanocomposites. Cotton fabrics were treated with prepared emulsions using citric acid and sodium hypophosphite. XRD measurements prove that the prepared TiO2 nanoparticles corresponded to anatase phase with average crystallite size d = 15.98 nm where the crystallinity and crystallite size decreased for Zn doped TiO2 where d = 11.7 nm. FTIR indicates that the exhibition of grafting process and formation polymer metal oxide nanocomposite. Samples treated with Copolymer showed the highest antibacterial properties. However, the copolymer doped with TiO2 and TiO2/ZnO showed lowest contact angle and affects positively on its photocatalytic performance. SEM and TEM micrographs confirmed that the prepared metal oxides are in nano scales, where TiO2 is smaller than TiO2/ZnO which effects on the band gap of TiO2/ZnO to be larger than TiO2 and consequently decreased on the photocatalytic properties TiO2/ZnO of samples compared to TiO2 sample under the halogen lamp.


Subject(s)
Chitosan/chemistry , Cotton Fiber , Metals/chemistry , Nanocomposites/chemistry , Polyvinyls/chemistry , Textiles , Mechanical Phenomena , Nanocomposites/ultrastructure , Photochemical Processes , Spectroscopy, Fourier Transform Infrared , Titanium/chemistry , X-Ray Diffraction , Zinc
SELECTION OF CITATIONS
SEARCH DETAIL
...