Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mutat Res ; 610(1-2): 85-92, 2006 Nov 07.
Article in English | MEDLINE | ID: mdl-16890479

ABSTRACT

Some hexavalent chromium [Cr(VI)]-containing compounds are lung carcinogens. Once within cells, Cr(VI) is reduced to trivalent chromium [Cr(III)] which displays an affinity for both DNA bases and the phosphate backbone. A diverse array of genetic lesions is produced by Cr including Cr-DNA monoadducts, DNA interstrand crosslinks (ICLs), DNA-Cr-protein crosslinks (DPCs), abasic sites, DNA strand breaks and oxidized bases. Despite the large amount of information available on the genotoxicity of Cr, little is known regarding the molecular mechanisms involved in the removal of these lesions from damaged DNA. Recent work indicates that nucleotide excision repair (NER) is involved in the processing of Cr-DNA adducts in human and rodent cells. In order to better understand this process at the molecular level and begin to identify the Cr-DNA adducts processed by NER, the incision of CrCl(3) [Cr(III)]-damaged plasmid DNA was studied using a thermal-resistant UvrABC NER endonuclease from Bacillus caldotenax (Bca). Treatment of plasmid DNA with Cr(III) (as CrCl(3)) increased DNA binding as a function of dose. For example, at a Cr(III) concentration of 1 microM we observed approximately 2 Cr(III)-DNA adducts per plasmid. At this same concentration of Cr(III) we found that approximately 17% of the plasmid DNA contained ICLs ( approximately 0.2 ICLs/plasmid). When plasmid DNA treated with Cr(III) (1 microM) was incubated with Bca UvrABC we observed approximately 0.8 incisions/plasmid. The formation of endonuclease IV-sensitive abasic lesions or Fpg-sensitive oxidized DNA bases was not detected suggesting that the incision of Cr(III)-damaged plasmid DNA by UvrABC was not related to the generation of oxidized DNA damage. Taken together, our data suggest that a sub-fraction of Cr(III)-DNA adducts is recognized and processed by the prokaryotic NER machinery and that ICLs are not necessarily the sole lesions generated by Cr(III) that are substrates for NER.


Subject(s)
Chromium Compounds/toxicity , DNA Damage , DNA Repair , Endodeoxyribonucleases/metabolism , Escherichia coli Proteins/metabolism , Plasmids/metabolism , Bacillus/enzymology , Chromium/chemistry , Chromium/toxicity , Chromium Compounds/chemistry , DNA Adducts/chemistry , DNA Adducts/metabolism , Plasmids/drug effects , Plasmids/genetics
2.
Anal Chem ; 77(16): 5402-6, 2005 Aug 15.
Article in English | MEDLINE | ID: mdl-16097787

ABSTRACT

A high efficiency nebulizer (HEN) coupled to a heated spray chamber and a membrane desolvator is used for liquid sample introduction in chemical reaction interface mass spectrometry (CRIMS). Compared to the conventional thermospray nebulizer operated at solvent flow rate of 1 mL/min, the HEN provides small droplets at lower flow rates (10-100 microL/min), improving the desolvation and analyte transport efficiency. As a result, the sensitivity for carbon detection by CRIMS is improved by a factor of 4. The new arrangement offers an easy-to-use and robust interface, facilitating the availability of a variety of liquid chromatographic techniques to the CRIMS. Separation and detection of labeled peptides in a mixture of unlabeled biopolymers is illustrated at a solvent flow rate of 45 microL/min as an example of new possibilities offered by the improved liquid introduction interface.


Subject(s)
Mass Spectrometry/instrumentation , Mass Spectrometry/methods , Peptides/chemistry , Proteins/chemistry , Sensitivity and Specificity , Volatilization
3.
Anal Chem ; 77(5): 1253-60, 2005 Mar 01.
Article in English | MEDLINE | ID: mdl-15732904

ABSTRACT

Laser-scattering techniques are utilized for the first time to visualize the aerosol droplets in an inductively coupled plasma (ICP) torch from the nebulizer tip to the site of analytical measurements. The resulting images provide key information about the spatial distribution of the aerosol introduced by direct injection and conventional sample introduction devices: (1) a direct injection high-efficiency nebulizer (DIHEN); (2) a large-bore DIHEN; and (3) a MicroFlow PFA nebulizer with a PFA Scott-type spray chamber. Moreover, particle image velocimetry is used to study the in situ behavior of the aerosol before interaction with the plasma, while the individual surviving droplets are explored by particle tracking velocimetry. Directly introduced aerosols are highly scattered across the plasma torch as a result of their radial motion, indicating less than optimum sample consumption efficiency for the current direct injection devices. Further, the velocity distribution of the surviving droplets demonstrates the importance of the initial droplet velocities in complete desolvation of the aerosol for optimum analytical performance in ICP spectrometries. These new observations are critical in the design of the next-generation direct injection devices for lower sample consumption, higher sensitivity, lower noise levels, suppressed matrix effects, and developing smart spectrometers.

4.
Anal Chem ; 76(24): 7194-201, 2004 Dec 15.
Article in English | MEDLINE | ID: mdl-15595860

ABSTRACT

Two novel laser-based imaging techniques centered on particle image velocimetry and optical patternation are used to map and contrast the size and velocity distributions for indirect and direct pneumatic nebulizations in plasma spectrometry. The flow field of droplets is illuminated by two pulses from a thin laser sheet with a known time difference. The scattering of the laser light from droplets is captured by a charge-coupled device (CCD), providing two instantaneous images of the particles. Pointwise cross-correlation of the corresponding images yields a two-dimensional velocity map of the aerosol velocity field. For droplet size distribution studies, the solution is doped with a fluorescent dye and both laser-induced florescence (LIF) and Mie scattering images are captured simultaneously by two CCDs with the same field of view. The ratio of the LIF/Mie images provides relative droplet size information, which is then scaled by a point calibration method via a phase Doppler particle analyzer. Two major findings are realized for three nebulization systems: (1) a direct injection high-efficiency nebulizer (DIHEN); (2) a large-bore DIHEN; and (3) a PFA microflow nebulizer with a PFA Scott-type spray chamber. First, the central region of the aerosol cone from the direct injection nebulizers and the nebulizer-spray chamber arrangement consists of fast (>13 and >8 m/s, respectively) and fine (<10 and <5 microm, respectively) droplets as compared to slow (<4 m/s) and large (>25 microm) droplets in the fringes. Second, the spray chamber acts as a momentum separator, rather than a droplet size selector, as it removes droplets having larger sizes or velocities. The concepts and results presented in this research may be used to develop smart-tunable nebulizers, for example, by using the measured momentum as a feedback control for adjusting the nebulizer, i.e., its operating conditions, its critical dimensions, or both.

5.
Appl Spectrosc ; 58(9): 1044-50, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15479520

ABSTRACT

Inductively coupled plasma mass spectrometry (ICP-MS), coupled with a large-bore direct injection high efficiency nebulizer (LB-DIHEN), was utilized to determine the concentration and isotopic ratio of uranium in 11 samples of synthetic urine spiked with varying concentrations and ratios of uranium isotopes. Total U concentrations and (235)U/(238)U isotopic ratios ranged from 0.1 to 10 microg/L and 0.0011 and 0.00725, respectively. The results are compared with data from other laboratories that used either alpha-spectrometry or quadrupole-based ICP-MS with a conventional nebulizer-spray chamber arrangement. Severe matrix effects due to the high total dissolved solid content of the samples resulted in a 60 to 80% loss of signal intensity, but were compensated for by using (233)U as an internal standard. Accurate results were obtained with LB-DIHEN-ICP-MS, allowing for the positive identification of depleted uranium based on the (235)U/(238)U ratio. Precision for the (235)U/(238)U ratio is typically better than 5% and 15% for ICP-MS and alpha-spectrometry, respectively, determined over the concentrations and ratios investigated in this study, with the LB-DIHEN-ICP-MS system providing the most accurate results. Short-term precision (6 min) for the individual (235)U and (238)U isotopes in synthetic urine is better than 2% (N = 7), compared to approximately 5% for conventional nebulizer-spray chamber arrangements and >10% for alpha-spectrometry. The significance of these measurements is discussed for uranium exposure assessment of Persian Gulf War veterans affected by depleted uranium ammunitions.


Subject(s)
Mass Spectrometry/methods , Nebulizers and Vaporizers , Occupational Exposure/analysis , Uranium/urine , Urinalysis/methods , Aerosols/analysis , Hot Temperature , Humans , Isotopes/analysis , Mass Spectrometry/instrumentation , Military Personnel , Reproducibility of Results , Sensitivity and Specificity , United States , Warfare
6.
Anal Bioanal Chem ; 372(1): 128-35, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11939181

ABSTRACT

Experimental studies and computer simulations were conducted to identify plasma operating conditions and to explore and contrast the excitation conditions of Ar, Ar-O2, and Ar-He inductively coupled plasmas (ICPs) for the introduction of microliter volumes of sample solutions with a direct injection high efficiency nebulizer (DIHEN). The best MgII 280.270 nm/MgI 285.213 nm ratio (6.6) measured with Ar ICP atomic emission spectrometry for the DIHEN (RF power = 1500 W; nebulizer gas flow rate = 0.12 L min(-1)) was less than the ratio (8.2) acquired on the same instrument for conventional nebulization (1500 W and 0.6 L min(-1)). Addition of small amounts of O2 or He (5%) to the outer gas flow improved excitation conditions in the ICP, that is, a more robust condition (a MgII/MgI ratio of up to 8.9) could be obtained by using the DIHEN with Ar-O2 and Ar-He mixed-gas plasmas, thereby minimizing some potential spectroscopic and matrix interferences, in comparison to Ar ICPAES.

SELECTION OF CITATIONS
SEARCH DETAIL
...