Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 39(12): 4317-4325, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36926895

ABSTRACT

The solid surfaces with different profile levels impact the liquid-solid contact nature and hence wetting characteristics, showing a vital role in liquid droplets' mobility and dynamic behaviors. Therefore, engineering nanostructured features ultimately enables tuning and controlling the dynamic motion of droplets. In this study, we demonstrate an approach to manipulate nanodroplets' motion behaviors in contact with a surface through tailoring the surface morphological profile. By tracking the trajectories of water molecules at the interface, we find that the motions of a nanodroplet subjected to different levels of lateral force reveal various modes that are identified as creeping, rolling, and jumping motions. Interestingly, the elastic deformation of the droplet and sudden changes in the receding contact angle provide the mechanistic origin for droplet jumping. Guided by computational simulations, a regime map delineating the droplet motion modes with surface profile levels and applied forces is constructed, providing a design strategy for controlling droplet motions via surface engineering.

2.
Langmuir ; 37(33): 9964-9972, 2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34378941

ABSTRACT

Droplet behaviors on solid surfaces will influence numerous droplet-based applications ranging from nonwetting-preferred water-repellent surfaces to wetting-preferred spray coatings. Understanding droplet behaviors is complicated and centered on integrating multiple parameters that include surface properties, droplet initial states, and other boundary conditions. Previous studies have observed that droplet impacting performance by showing their underlying mechanisms is sensitive to either droplet or surface boundary conditions. While the holistic view about droplet behaviors is still missing, here we study the droplet impacting and spreading behaviors by systemically varying surface conditions and droplet input parameters through the combination of optical experiments, simulations, and theoretical approaches. The observation defines three droplet behavior modes: bouncing, semibouncing, and spreading modes through their dynamic phases, where the most contributing parameters can be identified as the combination of initial Weber number and surface wettability. The We-θ phase diagram suggested here will provide a guideline for surface engineering with desired droplet dynamic behaviors.

3.
ACS Appl Mater Interfaces ; 12(47): 53416-53424, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-33191726

ABSTRACT

The thermophysical attributes of water molecules confined in a sub-nanometer thickness significantly differ from those in bulk liquid where their molecular behaviors start governing interfacial physics at the nanoscale. In this study, we elucidate nanothin film evaporation by employing a computational approach from a molecular perspective. As the liquid thickness decreases, the solid-like characteristics of adsorbed water nanofilms make the resistance at solid-liquid interfaces or Kapitza resistance significant. Kapitza resistances not only show a strong correlation with the surface wettability but also dominate the overall thermal resistance during evaporation rather than the resistance at evaporating liquid-vapor interfaces. Once the liquid thickness reaches the critical value of 0.5-0.6 nm, the evaporation kinetics is suppressed due to the excessive forces between the liquid and solid atoms. The understanding of molecular-level behaviors explains how a hydrophilic surface plays a role in determining evaporation rates from an atomistic perspective.

4.
ACS Appl Mater Interfaces ; 12(16): 19174-19183, 2020 Apr 22.
Article in English | MEDLINE | ID: mdl-32239917

ABSTRACT

Boiling heat transfer through a porous medium offers an attractive combination of enormous liquid-vapor interfacial area and high bubble nucleation site density. In this work, we characterize the boiling performances of porous media by employing the well-ordered and highly interconnected architecture of inverse opals (IOs). The boiling characterization identifies hydrodynamic mechanisms through which structural characteristics affect the boiling performance of metallic microporous architecture by validating empirical measurements. The boiling performances can be optimized through the rational design of both the structural thicknesses and pore diameters of IOs, which demonstrate up to 336% enhancement in boiling heat-transfer coefficient (HTC) over smooth surfaces. The optimal HTC and critical heat flux occur at approximately 3-4 µm in porous structure thickness, which is manifested through the balance of liquid-vapor occupation within the spatial confinement of the IO structure. The optimization of boiling performances with varying pore diameters (0.3-1.0 µm) can be attributed to the hydraulic competitions between permeability and viscous resistance to liquid-vapor transport. This study unveils thermophysical understandings to enhance multiphase heat transfer in microporous media for ultrahigh heat flux thermal management.

5.
Langmuir ; 34(47): 14439-14447, 2018 11 27.
Article in English | MEDLINE | ID: mdl-30372082

ABSTRACT

A recent design approach in creating super-repellent surfaces through slippery surface lubrication offers tremendous liquid-shedding capabilities. Previous investigations have provided significant insights into droplet-lubricant interfacial behaviors that govern antiwetting properties but have often studied using macroscale droplets. Despite drastically different governing characteristics of ultrasmall droplets on slippery lubricated surfaces, little is known about the effects at the micro- and nanoscale. In this investigation, we impregnate a three-dimensionally, well-ordered porous metal architecture with a lubricant to confirm durable slippery surfaces. We then reduce the droplet size to a nanoliter range and experimentally compare the droplet behaviors at different length scales. By experimentally varying the lubricant thickness levels, we also reveal that the effect of lubricant wetting around ultrasmall droplets is intensely magnified, which significantly affects the transient droplet dynamics. Molecular dynamics computations further examine the ultrasmall droplets with varying lubricant levels or pore cut levels at the nanoscale. The combined experimental and computational work provides insights into droplet interfacial phenomena on slippery surfaces from a macroscale to nanoscale perspective.

SELECTION OF CITATIONS
SEARCH DETAIL
...