Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Benef Microbes ; 7(2): 247-64, 2016.
Article in English | MEDLINE | ID: mdl-26839072

ABSTRACT

Prebiotics are selectively fermented ingredients that result in specific changes in the composition and/or activity of the gastrointestinal microbiota, thus conferring benefit(s) upon the host health. The aim of this study was to evaluate the influence of a ß(1-4)galacto-oligosaccharides (GOS) formulation consisting of 90% pure GOS (GOS90), on the composition and activity of the mouse gut microbiota. Germ-free mice were colonised with microbiota from four pathogen-free wt 129 mice donors (SPF), and stools were collected during a feeding trial in which GOS90 was delivered orally for 14 days. Pyrosequencing of 16S rDNA amplicons showed that Bifidobacterium and specific Lactobacillus, Bacteroides and Clostridiales were more prevalent in GOS90-fed mice after 14 days, although the prebiotic impact on Bifidobacterium varied among individual mice. Prebiotic feeding also resulted in decreased abundance of Bacteroidales, Helicobacter and Clostridium. High-throughput quantitative PCR showed an increased abundance of Bifidobacterium adolescentis, Bifidobacterium pseudocatenulatum, Bifidobacterium lactis and Bifidobacterium gallicum in the prebiotic-fed mice. Control female mice showed a higher diversity (phylogenetic diversity (PD) = 15.1 ± 3.4 in stools and PD = 13.0 ± 0.6 in intestinal contents) than control males (PD = 7.8 ± 1.6 in stool samples and PD = 9.5 ± 1.0 in intestinal contents). GOS90 did not modify inflammatory biomarkers (interleukin (IL)-6, IL-12, IL-1ß, interferon gamma and tumour necrosis factor alpha). Decreased butyrate, acetate and lactate concentrations in stools of prebiotic fed mice suggested an increase in colonic absorption and reduced excretion. Overall, our results demonstrate that GOS90 is capable of modulating the intestinal microbiome resulting in expansion of the probiome (autochtonous commensal intestinal bacteria considered to have a beneficial influence on health).


Subject(s)
Bifidobacterium/physiology , Gastrointestinal Microbiome , Oligosaccharides/metabolism , Prebiotics/administration & dosage , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bifidobacterium/genetics , Bifidobacterium/isolation & purification , Female , Fermentation , Galactose/metabolism , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/microbiology , Interleukin-12/genetics , Interleukin-12/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Male , Mice , Mice, 129 Strain , Oligosaccharides/administration & dosage , Oligosaccharides/analysis , Prebiotics/analysis
2.
Biofouling ; 30(10): 1175-82, 2014.
Article in English | MEDLINE | ID: mdl-25397362

ABSTRACT

In the present study, the efficacy of generally recognised as safe (GRAS) antimicrobial plant metabolites in regulating the growth of Staphylococcus aureus and S. epidermidis was investigated. Thymol, carvacrol and eugenol showed the strongest antibacterial action against these microorganisms, at a subinhibitory concentration (SIC) of ≤ 50 µg ml(-1). Genistein, hydroquinone and resveratrol showed antimicrobial effects but with a wide concentration range (SIC = 50-1,000 µg ml(-1)), while catechin, gallic acid, protocatechuic acid, p-hydroxybenzoic acid and cranberry extract were the most biologically compatible molecules (SIC ≥ 1000 µg ml(-1)). Genistein, protocatechuic acid, cranberry extract, p-hydroxybenzoic acid and resveratrol also showed anti-biofilm activity against S. aureus, but not against S. epidermidis in which, surprisingly, these metabolites stimulated biofilm formation (between 35% and 1,200%). Binary combinations of cranberry extract and resveratrol with genistein, protocatechuic or p-hydroxibenzoic acid enhanced the stimulatory effect on S. epidermidis biofilm formation and maintained or even increased S. aureus anti-biofilm activity.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Plant Extracts/pharmacology , Staphylococcus/drug effects , Biofilms/growth & development , Genistein/pharmacology , Hydroxybenzoates/pharmacology , Microbial Sensitivity Tests , Resveratrol , Skin Diseases, Bacterial/drug therapy , Staphylococcal Infections/drug therapy , Stilbenes/pharmacology , Vaccinium macrocarpon/chemistry
3.
J Food Prot ; 74(8): 1379-86, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21819671

ABSTRACT

The present work was aimed at characterizing 12 strains of lactic acid bacteria (LAB) to obtain improved potential starter or probiotic cultures that could be used for making dairy products from ewe's milk and cow's milk. Eight strains with antimicrobial properties, isolated from ewe's milk and from cheese made from ewe's and/or cow's milk, were studied. They were identified as Enterococcus faecalis (five strains), Lactococcus lactis subsp. cremoris, Leuconostoc mesenteroides, and Lactobacillus paracasei subsp. paracasei (one strain of each species). Additionally, four strains were obtained from the American Type Culture Collection: Lactobacillus casei 393 (isolated from cheese), L. lactis subsp. lactis 11454 (origin nonspecified and a producer of nisin), and two strains isolated from human feces (L. paracasei subsp. paracasei 27092 and Lactobacillus rhamnosus 53103, antibacterial agent producer). All E. faecalis strains showed at least one virulence factor (either hemolysin or gelatinase), which emphasizes the importance of these studies in this species. Both L. lactis strains and most Lactobacillus spp. were good acidifiers in ewe's milk and cow's milk at 30°C. High ß-galactosidase activity, as well as aminopeptidase activities that favor the development of desirable flavors in cheese, were detected in all Lactobacillus spp. strains. Furthermore, L. rhamnosus ATCC 53103 showed α-fucosidase activity (thought to help colonization of the intestine) and lack of α-glucosidase activity (a trait considered positive for diabetic and obese humans). This last enzymatic activity was also lacking in L. lactis ATCC 11454. L. mesenteroides was the only strain D(2)-lactic acid producer. The selection of any particular strain for probiotic or dairy cultures should be performed according to the technological and/or functional abilities needed.


Subject(s)
Dairy Products/microbiology , Food Microbiology , Probiotics , Animals , Cattle , Colony Count, Microbial , Enterococcus faecalis/physiology , Fermentation , Humans , Lactobacillus/physiology , Lactococcus/physiology , Leuconostoc/physiology , Milk/microbiology , Sheep , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...