Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 20397, 2023 11 21.
Article in English | MEDLINE | ID: mdl-37989845

ABSTRACT

Cervical cancer is a leading cause of death for women in low-resource settings despite being preventable through human papillomavirus (HPV) vaccination, early detection, and treatment of precancerous lesions. The World Health Organization recommends high-risk HPV (hrHPV) as the preferred cervical cancer screening strategy, which is difficult to implement in low-resource settings due to high costs, reliance on centralized laboratory infrastructure, and long sample-to-answer times. To help meet the need for rapid, low-cost, and decentralized cervical cancer screening, we developed tailed primer isothermal amplification and lateral flow detection assays for HPV16, HPV18, and HPV45 DNA. We translated these assays into a self-contained cartridge to achieve multiplexed detection of three hrHPV genotypes in a disposable cartridge. The developed test achieves clinically relevant limits of detection of 50-500 copies per reaction with extracted genomic DNA from HPV-positive cells. Finally, we performed sample-to-answer testing with direct lysates of HPV-negative and HPV-positive cell lines and demonstrated consistent detection of HPV16, HPV18, and HPV45 with 5000-50,000 cells/mL in < 35 min. With additional optimization to improve cartridge reliability, incorporation of additional hrHPV types, and validation with clinical samples, the assay could serve as a point-of-care HPV DNA test that improves access to cervical cancer screening in low-resource settings.


Subject(s)
Nucleic Acids , Papillomavirus Infections , Uterine Cervical Neoplasms , Female , Humans , Uterine Cervical Neoplasms/diagnosis , Human papillomavirus 16/genetics , Point-of-Care Systems , Early Detection of Cancer , Papillomavirus Infections/diagnosis , Reproducibility of Results , DNA, Viral/genetics , Genotype , Papillomaviridae/genetics
2.
Sci Transl Med ; 15(701): eabn4768, 2023 06 21.
Article in English | MEDLINE | ID: mdl-37343083

ABSTRACT

High-risk human papillomavirus (HPV) DNA testing is widely acknowledged as the most sensitive cervical cancer screening method but has limited availability in resource-limited settings, where the burden of cervical cancer is highest. Recently, HPV DNA tests have been developed for use in resource-limited settings, but they remain too costly for widespread use and require instruments that are often limited to centralized laboratories. To help meet the global need for low-cost cervical cancer screening, we developed a prototype, sample-to-answer, point-of-care test for HPV16 and HPV18 DNA. Our test relies on isothermal DNA amplification and lateral flow detection, two technologies that reduce the need for complex instrumentation. We integrated all test components into a low-cost, manufacturable platform, and performance of the integrated test was evaluated with synthetic samples, provider-collected clinical samples in a high-resource setting in the United States, and self-collected clinical samples in a low-resource setting in Mozambique. We demonstrated a clinically relevant limit of detection of 1000 HPV16 or HPV18 DNA copies per test. The test requires six user steps, yields results in 45 min, and can be performed using a benchtop instrument and minicentrifuge by minimally trained personnel. The projected per-test cost is <$5, and the projected instrumentation cost is <$1000. These results show the feasibility of a sample-to-answer, point-of-care HPV DNA test. With the inclusion of other HPV types, this test has the potential to fill a critical gap for decentralized and globally accessible cervical cancer screening.


Subject(s)
Papillomavirus Infections , Uterine Cervical Neoplasms , Female , Humans , Human papillomavirus 16/genetics , Human papillomavirus 18/genetics , Uterine Cervical Neoplasms/diagnosis , Uterine Cervical Neoplasms/genetics , Papillomavirus Infections/diagnosis , Resource-Limited Settings , Early Detection of Cancer/methods , DNA, Viral/genetics , Nucleic Acid Amplification Techniques/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...