Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Technol Adv Mater ; 23(1): 300-321, 2022.
Article in English | MEDLINE | ID: mdl-35557509

ABSTRACT

The rice leaf, combining the surface properties of lotus leaves and shark skin, presents outstanding superhydrophobic properties motivating its biomimesis. We created a novel biomimetic rice-leaf superhydrophobic surface by a three-level hierarchical structure, using for a first time stereolithographic (SLA) 3D printed channels (100µm width) with an intrinsic roughness from the printing filaments (10µm), and coated with TiO2 nanoparticles (22 and 100nm). This structure presents a maximum advancing contact angle of 165° characterized by lower both anisotropy and hysteresis contact angles than other 3D printed surfaces, due to the presence of air pockets at the surface/water interface (Cassie-Baxter state). Dynamic water-drop tests show that the biomimetic surface presents self-cleaning, which is reduced under UV-A irradiation. The biomimetic surface further renders an increased floatability to 3D printed objects meaning a drag-reduction due to reduced water/solid contact area. Numerical simulations of a channel with a biomimetic wall confirm that the presence of air is essential to understand our results since it increases the average velocity and decreases the friction factor due to the presence of a wall-slip velocity. Our findings show that SLA 3D printing is an appropriate approach to develop biomimetic superhydrophobic surfaces for future applications in anti-fouling and drag-reduction devices.

2.
Int J Numer Method Biomed Eng ; 33(8): e2843, 2017 08.
Article in English | MEDLINE | ID: mdl-27781397

ABSTRACT

This work presents a detailed investigation of a parameter estimation approach on the basis of the reduced-order unscented Kalman filter (ROUKF) in the context of 1-dimensional blood flow models. In particular, the main aims of this study are (1) to investigate the effects of using real measurements versus synthetic data for the estimation procedure (i.e., numerical results of the same in silico model, perturbed with noise) and (2) to identify potential difficulties and limitations of the approach in clinically realistic applications to assess the applicability of the filter to such setups. For these purposes, the present numerical study is based on a recently published in vitro model of the arterial network, for which experimental flow and pressure measurements are available at few selected locations. To mimic clinically relevant situations, we focus on the estimation of terminal resistances and arterial wall parameters related to vessel mechanics (Young's modulus and wall thickness) using few experimental observations (at most a single pressure or flow measurement per vessel). In all cases, we first perform a theoretical identifiability analysis on the basis of the generalized sensitivity function, comparing then the results owith the ROUKF, using either synthetic or experimental data, to results obtained using reference parameters and to available measurements.


Subject(s)
Arteries/physiology , Hemodynamics/physiology , Models, Cardiovascular , Nonlinear Dynamics , Algorithms , Aorta , Biomedical Engineering/methods , Computer Simulation , Elastic Modulus , Humans , Reproducibility of Results , Vascular Stiffness
3.
J Math Biol ; 70(4): 745-72, 2015 Mar.
Article in English | MEDLINE | ID: mdl-24671429

ABSTRACT

An association of stenotic internal jugular veins (IJVs) to anomalous cerebral venous hemodynamics and Multiple Sclerosis has been recently hypothesized. In this work, we set up a computational framework to assess the relevance of IJV stenoses through numerical simulation, combining medical imaging, patient-specific data and a mathematical model for venous occlusions. Coupling a three-dimensional description of blood flow in IJVs with a reduced one-dimensional model for major intracranial veins, we are able to model different anatomical configurations, an aspect of importance to understand the impact of IJV stenosis in intracranial venous haemodynamics. We investigate several stenotic configurations in a physiologic patient-specific regime, quantifying the effect of the stenosis in terms of venous pressure increase and wall shear stress patterns. Simulation results are in qualitative agreement with reported pressure anomalies in pathological cases. Moreover, they demonstrate the potential of the proposed multiscale framework for individual-based studies and computer-aided diagnosis.


Subject(s)
Hemodynamics , Jugular Veins/pathology , Jugular Veins/physiopathology , Models, Cardiovascular , Biomechanical Phenomena , Cerebrovascular Circulation , Computer Simulation , Constriction, Pathologic , Humans , Imaging, Three-Dimensional , Magnetic Resonance Angiography/statistics & numerical data , Mathematical Concepts , Multiple Sclerosis/pathology , Multiple Sclerosis/physiopathology , Venous Pressure
SELECTION OF CITATIONS
SEARCH DETAIL
...