Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Cancers (Basel) ; 14(19)2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36230673

ABSTRACT

The survival of patients with solid tumors, such as prostate cancer (PCa), has been limited and fleeting with anti-angiogenic therapies. It was previously thought that the mechanism by which the vasculature regulates tumor growth was driven by a passive movement of oxygen and nutrients to the tumor tissue. However, previous evidence suggests that endothelial cells have an alternative role in changing the behavior of tumor cells and contributing to cancer progression. Determining the impact of molecular signals/growth factors released by endothelial cells (ECs) on established PCa cell lines in vitro and in vivo could help to explain the mechanism by which ECs regulate tumor growth. Using cell-conditioned media collected from HUVEC (HUVEC-CM), our data show the stimulated proliferation of all the PCa cell lines tested. However, in more aggressive PCa cell lines, HUVEC-CM selectively promoted migration and invasion in vitro and in vivo. Using a PCa-cell-line-derived xenograft model co-injected with HUVEC or preincubated with HUVEC-CM, our results are consistent with the in vitro data, showing enhanced tumor growth, increased tumor microvasculature and promoted metastasis. Gene set enrichment analyses from RNA-Seq gene expression profiles showed that HUVEC-CM induced a differential effect on gene expression when comparing low versus highly aggressive PCa cell lines, demonstrating epigenetic and migratory pathway enrichments in highly aggressive PCa cells. In summary, paracrine stimulation by HUVEC increased PCa cell proliferation and tumor growth and selectively promoted migration and metastatic potential in more aggressive PCa cell lines.

2.
Cancers (Basel) ; 13(14)2021 Jul 20.
Article in English | MEDLINE | ID: mdl-34298835

ABSTRACT

Cancer therapy may be improved by the simultaneous interference of two or more oncogenic pathways contributing to tumor progression and aggressiveness, such as EGFR and p53. Tumor cells expressing gain-of-function (GOF) mutants of p53 (mutp53) are usually resistant to EGFR inhibitors and display invasive migration and AKT-mediated survival associated with enhanced EGFR recycling. D-Propranolol (D-Prop), the non-beta blocker enantiomer of propranolol, was previously shown to induce EGFR internalization through a PKA inhibitory pathway that blocks the recycling of the receptor. Here, we first show that D-Prop decreases the levels of EGFR at the surface of GOF mutp53 cells, relocating the receptor towards recycling endosomes, both in the absence of ligand and during stimulation with high concentrations of EGF or TGF-α. D-Prop also inactivates AKT signaling and reduces the invasive migration and viability of these mutp53 cells. Unexpectedly, mutp53 protein, which is stabilized by interaction with the chaperone HSP90 and mediates cell oncogenic addiction, becomes destabilized after D-Prop treatment. HSP90 phosphorylation by PKA and its interaction with mutp53 are decreased by D-Prop, releasing mutp53 towards proteasomal degradation. Furthermore, a single daily dose of D-Prop reproduces most of these effects in xenografts of aggressive gallbladder cancerous G-415 cells expressing GOF R282W mutp53, resulting in reduced tumor growth and extended mice survival. D-Prop then emerges as an old drug endowed with a novel therapeutic potential against EGFR- and mutp53-driven tumor traits that are common to a large variety of cancers.

3.
Front Oncol ; 11: 686792, 2021.
Article in English | MEDLINE | ID: mdl-34178680

ABSTRACT

The tumor microenvironment (TME) corresponds to a complex and dynamic interconnection between the extracellular matrix and malignant cells and their surrounding stroma composed of immune and mesenchymal cells. The TME has constant cellular communication through cytokines that sustain an inflammatory profile, which favors tumor progression, angiogenesis, cell invasion, and metastasis. Although the epithelial-mesenchymal transition (EMT) represents a relevant metastasis-initiating event that promotes an invasive phenotype in malignant epithelial cells, its relationship with the inflammatory profile of the TME is poorly understood. Previous evidence strongly suggests that cyclooxygenase-2 (COX-2) overexpression, a pro-inflammatory enzyme related to chronic unresolved inflammation, is associated with common EMT-signaling pathways. This review article summarizes how COX-2 overexpression, within the context of the TME, orchestrates the EMT process and promotes initial metastatic-related events.

4.
Cancer Res ; 81(11): 2824-2832, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33762358

ABSTRACT

Clinical localization of primary tumors and sites of metastasis by PET is based on the enhanced cellular uptake of 2-deoxy-2-[18F]-fluoro-D-glucose (FDG). In prostate cancer, however, PET-FDG imaging has shown limited clinical applicability, suggesting that prostate cancer cells may utilize hexoses other than glucose, such as fructose, as the preferred energy source. Our previous studies suggested that prostate cancer cells overexpress fructose transporters, but not glucose transporters, compared with benign cells. Here, we focused on validating the functional expression of fructose transporters and determining whether fructose can modulate the biology of prostate cancer cells in vitro and in vivo. Fructose transporters, Glut5 and Glut9, were significantly upregulated in clinical specimens of prostate cancer when compared with their benign counterparts. Fructose levels in the serum of patients with prostate cancer were significantly higher than healthy subjects. Functional expression of fructose transporters was confirmed in prostate cancer cell lines. A detailed kinetic characterization indicated that Glut5 represents the main functional contributor in mediating fructose transport in prostate cancer cells. Fructose stimulated proliferation and invasion of prostate cancer cells in vitro. In addition, dietary fructose increased the growth of prostate cancer cell line-derived xenograft tumors and promoted prostate cancer cell proliferation in patient-derived xenografts. Gene set enrichment analysis confirmed that fructose stimulation enriched for proliferation-related pathways in prostate cancer cells. These results demonstrate that fructose promotes prostate cancer cell growth and aggressiveness in vitro and in vivo and may represent an alternative energy source for prostate cancer cells. SIGNIFICANCE: This study identifies increased expression of fructose transporters in prostate cancer and demonstrates a role for fructose as a key metabolic substrate supporting prostate cancer cells, revealing potential therapeutic targets and biomarkers.


Subject(s)
Biomarkers, Tumor/metabolism , Diet/adverse effects , Fructose/pharmacology , Gene Expression Regulation, Neoplastic , Glucose Transport Proteins, Facilitative/metabolism , Glucose Transporter Type 5/metabolism , Prostatic Neoplasms/pathology , Animals , Apoptosis , Biomarkers, Tumor/genetics , Cell Cycle , Cell Movement , Cell Proliferation , Glucose Transport Proteins, Facilitative/genetics , Glucose Transporter Type 5/genetics , Male , Mice , Mice, Inbred NOD , Mice, SCID , Prostatic Neoplasms/chemically induced , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
5.
medRxiv ; 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32908986

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome virus (SARS-CoV-2) is challenging global public health, due to an increasing demand for testing and the shortage of diagnostic supplies. Nasopharyngeal swab (NPS) is considered the optimal sample for SARS-CoV2 diagnosis and sputum (SPT) has been proposed as an economic alternative. However, the temporal concordance of diagnosis in NPS and SPT has not been addressed. METHODS: Through a longitudinal study we compared the shedding dynamics of SARS-CoV-2 RNA evaluated by RT-qPCR in serially collected SPT and NPS obtained from 82 ambulatory and hospitalized patients during acute infection and convalescence. The concordance during the follow-up and cost analysis between both collected specimens was evaluated. FINDINGS: We analyzed 379 samples, 177 NPS and 202 SPT. The highest proportion of positive samples was detected within the first 15 days after the symptoms onset. The median time of positivity was higher for NPS (median= 25 days) than SPT (median= 21 days). There was no significant difference in the median RT-qPCR CT values between both sample types. The temporal categorization of matched-paired samples indicated substantial correlation (r=0.6023) and substantial agreement (87.23%) during the first ten days since symptoms onset (kappa = 0.697). A cost analysis demonstrated a significant saving when the SPT specimen was used. INTERPRETATION: Sputum is a feasible and cost-saving alternative to NPS, providing an equivalent value for the detection and follow-up of SARS-CoV-2 RNA.

6.
Biol Res ; 53(1): 13, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32293552

ABSTRACT

BACKGROUND: Gallbladder cancer (GBC) is the most common tumor of the biliary tract. The incidence of GBC shows a large geographic variability, being particularly frequent in Native American populations. In Chile, GBC represents the second cause of cancer-related death among women. We describe here the establishment of three novel cell lines derived from the ascitic fluid of a Chilean GBC patient, who presented 46% European, 36% Mapuche, 12% Aymara and 6% African ancestry. RESULTS: After immunocytochemical staining of the primary cell culture, we isolated and comprehensively characterized three independent clones (PUC-GBC1, PUC-GBC2 and PUC-GBC3) by short tandem repeat DNA profiling and RNA sequencing as well as karyotype, doubling time, chemosensitivity, in vitro migration capability and in vivo tumorigenicity assay. Primary culture cells showed high expression of CK7, CK19, CA 19-9, MUC1 and MUC16, and negative expression of mesothelial markers. The three isolated clones displayed an epithelial phenotype and an abnormal structure and number of chromosomes. RNA sequencing confirmed the increased expression of cytokeratin and mucin genes, and also of TP53 and ERBB2 with some differences among the three cells lines, and revealed a novel exonic mutation in NF1. The PUC-GBC3 clone was the most aggressive according to histopathological features and the tumorigenic capacity in NSG mice. CONCLUSIONS: The first cell lines established from a Chilean GBC patient represent a new model for studying GBC in patients of Native American descent.


Subject(s)
Antigens, Tumor-Associated, Carbohydrate/genetics , Gallbladder Neoplasms/genetics , Indians, South American/genetics , Animals , Antineoplastic Agents/pharmacology , Ascitic Fluid/metabolism , Carcinogenesis/genetics , Carcinogenicity Tests , Cell Line, Tumor/drug effects , Cell Line, Tumor/metabolism , Chile , Cisplatin/pharmacology , Clone Cells/drug effects , Clone Cells/metabolism , DNA Fingerprinting , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Epithelial Cells/metabolism , Gallbladder Neoplasms/metabolism , Gene Expression Profiling , Genes, erbB-2/genetics , Humans , Keratin-19/genetics , Keratin-7/genetics , Male , Mice, Inbred NOD , Middle Aged , Receptor, ErbB-2/genetics , Sequence Analysis, RNA , Tumor Cells, Cultured , Tumor Suppressor Protein p53/genetics , Gemcitabine
7.
Biol. Res ; 53: 13, 2020. tab, graf
Article in English | LILACS | ID: biblio-1100919

ABSTRACT

BACKGROUND: Gallbladder cancer (GBC) is the most common tumor of the biliary tract. The incidence of GBC shows a large geographic variability, being particularly frequent in Native American populations. In Chile, GBC represents the second cause of cancer-related death among women. We describe here the establishment of three novel cell lines derived from the ascitic fluid of a Chilean GBC patient, who presented 46% European, 36% Mapuche, 12% Aymara and 6% African ancestry. RESULTS: After immunocytochemical staining of the primary cell culture, we isolated and comprehensively characterized three independent clones (PUC-GBC1, PUC-GBC2 and PUC-GBC3) by short tandem repeat DNA profiling and RNA sequencing as well as karyotype, doubling time, chemosensitivity, in vitro migration capability and in vivo tumorigenicity assay. Primary culture cells showed high expression of CK7, CK19, CA 19-9, MUC1 and MUC16, and negative expression of mesothelial markers. The three isolated clones displayed an epithelial phenotype and an abnormal structure and number of chromosomes. RNA sequencing confirmed the increased expression of cytokeratin and mucin genes, and also of TP53 and ERBB2 with some differences among the three cells lines, and revealed a novel exonic mutation in NF1. The PUC-GBC3 clone was the most aggressive according to histopathological features and the tumorigenic capacity in NSG mice. CONCLUSIONS: The first cell lines established from a Chilean GBC patient represent a new model for studying GBC in patients of Native American descent.


Subject(s)
Humans , Animals , Male , Middle Aged , Antigens, Tumor-Associated, Carbohydrate/genetics , Indians, South American/genetics , Gallbladder Neoplasms/genetics , Ascitic Fluid/metabolism , Tumor Cells, Cultured , Carcinogenicity Tests , Chile , DNA Fingerprinting , Tumor Suppressor Protein p53/genetics , Cisplatin/pharmacology , Mice, Inbred NOD , Clone Cells/drug effects , Clone Cells/metabolism , Sequence Analysis, RNA , Receptor, ErbB-2/genetics , Genes, erbB-2/genetics , Gene Expression Profiling , Cell Line, Tumor/drug effects , Cell Line, Tumor/metabolism , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Epithelial Cells/metabolism , Keratin-19/genetics , Keratin-7/genetics , Carcinogenesis/genetics , Gallbladder Neoplasms/metabolism , Antineoplastic Agents/pharmacology
8.
Mol Biol Cell ; 29(5): 557-574, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29298841

ABSTRACT

Epithelial cells can acquire invasive and tumorigenic capabilities through epithelial-mesenchymal-transition (EMT). The glycan-binding protein galectin-8 (Gal-8) activates selective ß1-integrins involved in EMT and is overexpressed by certain carcinomas. Here we show that Gal-8 overexpression or exogenous addition promotes proliferation, migration, and invasion in nontumoral Madin-Darby canine kidney (MDCK) cells, involving focal-adhesion kinase (FAK)-mediated transactivation of the epidermal growth factor receptor (EGFR), likely triggered by α5ß1integrin binding. Under subconfluent conditions, Gal-8-overexpressing MDCK cells (MDCK-Gal-8H) display hallmarks of EMT, including decreased E-cadherin and up-regulated expression of vimentin, fibronectin, and Snail, as well as increased ß-catenin activity. Changes related to migration/invasion included higher expression of α5ß1 integrin, extracellular matrix-degrading MMP13 and urokinase plasminogen activator/urokinase plasminogen activator receptor (uPA/uPAR) protease systems. Gal-8-stimulated FAK/EGFR pathway leads to proteasome overactivity characteristic of cancer cells. Yet MDCK-Gal-8H cells still develop apical/basolateral polarity reverting EMT markers and proteasome activity under confluence. This is due to the opposite segregation of Gal-8 secretion (apical) and ß1-integrins distribution (basolateral). Strikingly, MDCK-Gal-8H cells acquired tumorigenic potential, as reflected in anchorage-independent growth in soft agar and tumor generation in immunodeficient NSG mice. Therefore, Gal-8 can promote oncogenic-like transformation of epithelial cells through partial and reversible EMT, accompanied by higher proliferation, migration/invasion, and tumorigenic properties.


Subject(s)
Epithelial-Mesenchymal Transition , ErbB Receptors/metabolism , Galectins/metabolism , Proteasome Endopeptidase Complex/metabolism , Signal Transduction , Animals , Cadherins/metabolism , Carcinogenesis , Dogs , Focal Adhesion Kinase 1/metabolism , Humans , Integrin beta1/metabolism , Madin Darby Canine Kidney Cells , Male , Mice , Neoplasms, Experimental , Recombinant Proteins/metabolism , Transfection , Up-Regulation , Urokinase-Type Plasminogen Activator/metabolism
9.
ARS med. (Santiago, En línea) ; 43(2): 17-24, 2018. Tab
Article in Spanish | LILACS | ID: biblio-1022835

ABSTRACT

Establecer un score genético utilizando los polimorfismos de nucleótido único (SNPs) del gen que codifica para Ribonucleasa L (RNASEL)y regiones cromosómicas 8q24 y 17q12-24 en combinación con el antígeno específico de la próstata (PSA) para predecir la agresividad del cáncer de próstata (CaP). Pacientes y métodos: hombres con CaP tratados con prostatectomía radical. Se analizaron variables clínicas y patológicas: edad al diagnóstico, PSA al diagnóstico, el volumen tumoral (TV) y extensión extracapsular (ECE) según el TNM (tumour, node and metastasis) (ECE ≥T3) y score de Gleason. Desarrollamos un modelo de puntaje genético usando regresión logística multivariable. Resultados: se incluyeron 86 pacientes sometidos a prostatectomía radical. Edad promedio fue de 62 ± 7,5 años. El promedio de PSA fue de 11,3 ± 10,6 ng/mL. Treinta y un pacientes (36 por ciento) tuvieron ECE. La mediana del TV fue de 3,8 cc. Un PSA ≥ 10 ng/mL se asoció con una mayor tasa de ECE (p <0,05) y TV más alto (p = 0,032). En el análisis univariable, los pacientes con > 1 SNP tienen mayor riesgo de ECE que los pacientes con ≤ 1 SNP (42 por ciento vs. 10,5 por ciento, p = 0,01), y los pacientes con ≥ 3 SNP tienen más TV que los pacientes con <3 SNP (60 por ciento vs. 32 por ciento, p = 0,015). Se crearon dos modelos de riesgo usando el número de SNP y PSA ≥ o <10 ng/mL para predecir ECE (sensibilidad 67 por ciento y especificidad 84 por ciento) y TV (sensibilidad 59 por ciento y especificidad 70 por ciento). Conclusiones: El score genético presentado en este estudio es una herramienta novedosa para predecir indicadores de agresividad del CaP, como ECE y TV.(AU)


To establish a genetic score using SNPs (from RNAsel and chromosomal regions 8q24 and 17q12-24) in combination with Prostate Specific Antigen (PSA) at diagnosis to predict aggressiveness of PCa (tumor volume (TV) and extracapsular extension (ECE)). Patients and methods: Men with PCa diagnosed by needle biopsy and treated with radical prostatectomy (RP). Clinical and pathological variables such as age at diagnosis, PSA at diagnosis, TV, extension of tumor according TNM (ECE ≥T3) and Gleason score where analyzed. We developed a genetic score model using Multivariate Logistic Regression. Results: We included 86 patients who underwent RP. Mean age 62 ± 7.5 years. Mean PSA was 11.3 ± 10.6 ng/mL. Thirty-one patients (36 percent) had ECE. Median TV was 3.8 cc. PSA ≥ 10 ng/mL was associated with increased rate of ECE (p <0.05) and higher TV (p = 0.032). In univariate analysis, patients with more than 1 SNP had a greater risk of ECE than patients with ≤ 1 SNP (42 percent vs. 10.5 percent, p = 0.01), and patients with ≥ 3 risk SNPs had more TV than patients with <3 SNPs risk (60 percent vs. 32 percent, p = 0.015). Two models of risk using the number of SNPs and PSA ≥ or <10 ng/mL to predict ECE (sensitivity 67 percent and specificity 84 percent) and TV (sensitivity 59 percent and specificity 70 percent) were created. Conclusions: Genetic score usingdescribed SNPs and preoperative PSA can predict aggressiveness of PCa, which would be useful to define a management with more information at diagnosis especially in localized cancers.(AU)


Subject(s)
Humans , Male , Adult , Middle Aged , Prostatic Neoplasms , Neoplasm Grading , Prostate-Specific Antigen , Polymorphism, Single Nucleotide
10.
ARS med. (Santiago, En línea) ; 43(2): 25-32, 2018. Tab
Article in Spanish | LILACS | ID: biblio-1022841

ABSTRACT

El objetivo de este estudio fue establecer una asociación entre diversas variables demográficas y epidemiológicas con la agresividad del cáncer de próstata (CaP). Métodos: pacientes diagnosticados con CaP respondieron una encuesta que incluye el nivel de educación, los factores de riesgo cardiovascular (FRCV), los antecedentes familiares (HF) de CaP, consumo de alcohol, tabaquismo y otros. Se utilizó análisis univariado y multivariado (AMV) para establecer si los factores mencionados anteriormente afectan las variables asociadas con la agresividad del CaP, como la edad al momento del diagnóstico, el índice de Gleason, los márgenes positivos (MP) y las metástasis óseas (MO), entre otras. Resultados: se incluyeron ciento setenta y dos hombres en el análisis. Los pacientes con HF fueron diagnosticados a edades más tempranas que los pacientes sin HF (55,73 vs 66,45 años, p = 0,0001). Los pacientes que beben tienen un mayor número de MP que los pacientes que no (15 vs 4 pacientes, p = 0,04). El AMV mostró que los pacientes que consumen alcohol y los que fuman (activos o suspendidos) tuvieron un mayor riesgo de MP (OR = 4,45 y 4,1, IC 95 por ciento 1,16-17,07 y 1,14-14,72, respectivamente, ambos p <0,05). Los pacientes con mayor nivel de educación presentaron un mayor riesgo de CaP confinado (OR = 3,42, IC 95 por ciento 1,392-8,434, p = 0,007). Conclusiones: los pacientes que consumen alcohol, fuman y tienen un menor nivel de educación presentaron un mayor riesgo de desarrollar CaP agresivo. (AU)


The aim of this study was to establish an association between various demographic and epidemiological variables with aggressiveness of prostate cancer (PCa). Methods: Patients diagnosed with PCa, answered a survey that include level of education, cardiovascular risk factors (CVRF), family history (FH) of PCa, alcohol intake, smoke and others. Univariate and multivariate analysis (MVA) were used to establish whether the factors mentioned above affect variables associated with aggressiveness of PCa such as: age at diagnosis, Gleason score, positive margins (PM), and bone metastasis (BM). Results: One hundred and seventy two men were included in the analysis. Patients with FH had cancer diagnosed at younger ages (55.73 years to FH vs 66.45 years to no FH, p = 0.0001). Patients who drink had higher number of PM than patients who did not (15 vs 4 patients, p= 0.04). MVA showed that patients who consumed alcohol and patients who smoked (active or suspended) had an increased risk of PM (OR= 4.45 and 4.1, 95 percent CI 1.16-17.07 and 1.14-14.72, respectively, both p<0.05). Patients with higher level of education presented an increased risk of confined PCa (OR= 3.42, 95 percent CI 1.392-8.434, p= 0.007). Conclusions: Patients who consume alcohol, smoke and have lower level of education presented a higher risk of developing aggressive PCa. (AU)


Subject(s)
Humans , Male , Adult , Middle Aged , Prostatic Neoplasms , Surveys and Questionnaires , Nicotiana , Alcoholic Beverages
11.
Oncotarget ; 8(14): 23073-23086, 2017 Apr 04.
Article in English | MEDLINE | ID: mdl-28160570

ABSTRACT

The interaction between acute myeloid leukemia cells (AML) with the bone marrow stroma cells (BMSCs) determines a protective environment that favors tumor development and resistance to conventional chemotherapy. We showed that BMSCs secrete soluble factors that protect AML cells from Ara-C induced cytotoxicity. This leukemia chemoresistance is associated with a decrease in the equilibrative nucleoside transporter (ENT1) activity by inducing removal of ENT1 from the cell surface. Reduction of cell proliferation was also observed with activation of AKT and mTOR-dependent cell survival pathways, which may also contribute to the tumor chemoprotection. Analysis of primary BMSC cultures has demonstrated that AML patients with stroma capable to confer Ara-C resistance in vitro compared to AML patients without this stroma capacity were associated with a worse prognosis. The two year overall survival rate was 0% versus 80% respectively (p=0.0001). This is the first report of a chemoprotection mechanism based on the removal of a drug transporter from the cell surface and most importantly the first time that a stroma phenotype has correlated with prognostic outcome in cancer.


Subject(s)
Bone Marrow/metabolism , Cytarabine/pharmacology , Equilibrative Nucleoside Transporter 1/metabolism , Leukemia, Myeloid, Acute/drug therapy , Bone Marrow Cells/pathology , Cell Line, Tumor , Drug Resistance, Neoplasm , Humans , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Patient Outcome Assessment , Stromal Cells/pathology
12.
Angiogenesis ; 20(1): 25-38, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27679502

ABSTRACT

BACKGROUND: Sex-related differences in the role of androgen have been reported in cardiovascular diseases and angiogenesis. Moreover, androgen receptor (AR) has been causally involved in the homeostasis of human prostate endothelial cells. However, levels of expression, functionality and biological role of AR in male- and female-derived human endothelial cells (ECs) remain poorly characterized. The objectives of this work were (1) to characterize the functional expression of AR in male- and female-derived human umbilical vein endothelial cell (HUVEC), and (2) to specifically analyze the biological effects of DHT, and the role of AR on these effects, in male-derived HUVECs (mHUVECs). RESULTS: Immunohistochemical analyses of tissue microarrays from benign human tissues confirmed expression of AR in ECs from several androgen-regulated and non-androgen-regulated human organs. Functional expression of AR was validated in vitro in male- and female-derived HUVECs using quantitative RT-PCR, immunoblotting and AR-mediated transcriptional activity assays. Our results indicated that functional expression of AR in male- and female-derived HUVECs was heterogeneous, but not sex dependent. In parallel, we analyzed in depth the biological effects of DHT, and the role of AR on these effects, on proliferation, survival and tube formation capacity in mHUVECs. Our results indicated that DHT did not affect mHUVEC survival; however, DHT stimulated mHUVEC proliferation and suppressed mHUVEC tube formation capacity. While the effect of DHT on proliferation was mediated through AR, the effect of DHT on tube formation did not depend on the presence of a functional AR, but rather depended on the ability of mHUVECs to further metabolize DHT. CONCLUSIONS: (1) Heterogeneous expression of AR in male- and female-derived HUVEC could define the presence of functionally different subpopulations of ECs that may be affected differentially by androgens, which could explain, at least in part, the pleiotropic effects of androgen on vascular biology, and (2) DHT, and metabolites of DHT, generally thought to represent progressively more hydrophilic products along the path to elimination, may have differential roles in modulating the biology of human ECs through AR-dependent and AR-independent mechanisms, respectively.


Subject(s)
Androgens/pharmacology , Homeostasis/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Receptors, Androgen/metabolism , Androstanols/metabolism , Androsterone/metabolism , Cell Proliferation/drug effects , Cell Survival/drug effects , Dihydrotestosterone/chemistry , Dihydrotestosterone/pharmacology , Female , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Male , Models, Biological , Neovascularization, Physiologic/drug effects , Organ Specificity/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Androgen/genetics
13.
J Cell Mol Med ; 19(7): 1530-7, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25736582

ABSTRACT

Androgen deprivation therapy (ADT) provides palliation for most patients with advanced prostate cancer (CaP); however, greater than 80% subsequently fail ADT. ADT has been indicated to induce an acute but transient destabilization of the prostate vasculature in animal models and humans. Human re-hydrated lyophilized platelets (hRL-P) were investigated as a prototype for therapeutic agents designed to target selectively the tumour-associated vasculature in CaP. The ability of hRL-P to bind the perturbed endothelial cells was tested using thrombin- and ADP-activated human umbilical vein endothelial cells (HUVEC), as well as primary xenografts of human prostate tissue undergoing acute vascular involution in response to ADT. hRL-P adhered to activated HUVEC in a dose-responsive manner. Systemically administered hRL-P, and hRL-P loaded with super-paramagnetic iron oxide (SPIO) nanoparticles, selectively targeted the ADT-damaged human microvasculature in primary xenografts of human prostate tissue. This study demonstrated that hRL-P pre-loaded with chemo-therapeutics or nanoparticles could provide a new paradigm for therapeutic modalities to prevent the rebound/increase in prostate vasculature after ADT, inhibiting the transition to castration-recurrent growth.


Subject(s)
Bioengineering/methods , Blood Platelets/metabolism , Prostatic Neoplasms/blood supply , Aged , Androgens/pharmacology , Animals , Blood Platelets/drug effects , Cell Adhesion/drug effects , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Freeze Drying , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Male , Mice , Middle Aged , Optical Imaging , Prostate/drug effects , Prostate/pathology , Xenograft Model Antitumor Assays
14.
Cell Signal ; 27(1): 135-46, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25451079

ABSTRACT

The PIM1 oncogene is over-expressed in human prostate cancer epithelial cells. Importantly, we observe that in human hyperplastic and cancerous prostate glands PIM1 is also markedly elevated in prostate fibroblasts, suggesting an important role for this kinase in epithelial/stromal crosstalk. The ability of PIM1 to regulate the biologic activity of stromal cells is demonstrated by the observation that expression of PIM1 kinase in human prostate fibroblasts increases the level and secretion of the extracellular matrix molecule, collagen 1A1 (COL1A1), the pro-inflammatory chemokine CCL5, and the platelet-derived growth factor receptors (PDGFR). PIM1 is found to regulate the transcription of CCL5. In co-cultivation assays where PIM1 over-expressing fibroblasts are grown with BPH1 prostate epithelial cells, PIM1 activity markedly enhances the ability of these fibroblasts to differentiate into myofibroblasts and express known markers of cancer-associated fibroblasts (CAFs). This differentiation can be reversed by the addition of small molecule PIM kinase inhibitors. Western blots demonstrate that PIM1 expression in prostate fibroblasts stimulates the phosphorylation of molecules that regulate 5'Cap driven protein translation, including 4EBP1 and eIF4B. Consistent with the hypothesis that the kinase controls translation of specific mRNAs in prostate fibroblasts, we demonstrate that PIM1 expression markedly increases the level of COL1A1 and PDGFRß mRNA bound to polysomes. Together these results point on PIM1 as a novel factor in regulation of the phenotype and differentiation of fibroblasts in prostate cancer by controlling both the transcription and translation of specific mRNAs.


Subject(s)
Fibroblasts/enzymology , Prostate/pathology , Proto-Oncogene Proteins c-pim-1/metabolism , Cell Line, Tumor , Cell Proliferation , Chemokine CCL5/genetics , Chemokine CCL5/metabolism , Coculture Techniques , Collagen Type I/metabolism , Collagen Type I, alpha 1 Chain , Epithelial Cells/metabolism , Epithelial Cells/pathology , Fibroblasts/pathology , Gene Expression Regulation, Neoplastic , Humans , Inflammation Mediators/metabolism , Male , Models, Biological , Phosphorylation , Prostatic Neoplasms/enzymology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Platelet-Derived Growth Factor/metabolism , Stromal Cells/pathology , Transcription, Genetic
15.
J Cancer Res Clin Oncol ; 140(5): 783-8, 2014 May.
Article in English | MEDLINE | ID: mdl-24627192

ABSTRACT

PURPOSE: To study the association between the polymorphisms, rs1859962 and rs4430796, from the chromosomes 17q24 and 17q12, respectively, with the risk of prostate cancer (PCa) and its clinical characteristics in a Hispanic (Chilean) population. METHODS: This study included 33 controls and 167 patients diagnosed with PCa. The polymorphisms, rs1859962 and rs4430796, were analyzed on blood specimens using quantitative PCR. The genetic analysis of the qPCR data was performed using the SNPStats program. A comparison between the clinical characteristics of the prostate cancers from the patients and the presence of the different polymorphism genotypes detected in blood specimens obtained from these patients was performed using the IBM SPSS v20.0 software. RESULTS: We observed no association of the SNPs and the risk of developing PCa (OR 0.84, 95 % CI 0.30-2.38, p = 1.0 to rs1859962 and OR 1.94, 95 % CI 0.57-6.52, p = 0.28 to rs4430796), both sporadic and hereditary. However, patients carrying the genotype G/G from the polymorphism rs4430796 had significantly higher PSA levels than patients carrying the other genotypes (15.05 ng/ml to G/G, 10 and 8.11 ng/ml to genotypes A/G y A/A, respectively, p = 0.01). Furthermore, patients with the genotype G/G of rs4430796 had higher tumor volume than other genotypes (9.45 cc to G/G and 5.22 cc to A/G + A/A, p = 0.04). CONCLUSION: The polymorphism rs4430796 of the chromosome 17q12 appears to be a biomarker for cancer aggressiveness, increased PSA and tumor volume of PCa.


Subject(s)
Biomarkers, Tumor/genetics , Chromosomes, Human, Pair 17/genetics , Genetic Association Studies , Polymorphism, Single Nucleotide/genetics , Prostatic Neoplasms/genetics , Aged , Alleles , Genetic Predisposition to Disease , Hispanic or Latino , Humans , Male , Middle Aged , Neoplasm Staging , Prostatic Neoplasms/pathology , Risk Factors
16.
J Cell Mol Med ; 18(1): 125-33, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24224612

ABSTRACT

To study the association between the polymorphisms Arg462Gln and Asp541Glu from the RNASEL gene (1q25), and the polymorphisms rs620861, rs1447295, rs6983267, rs7837328 from the chromosome 8q24 with the risk of presenting prostate cancer (PCa) and its clinical characteristics in a Hispanic (Chilean) population. The study was performed on 21 control patients and 83 patients diagnosed with PCa. Polymorphisms were analysed from blood samples through real-time PCR by using TaqMan probes, and the genetic analysis was performed with the SNPStats program. Also, a comparison was performed between clinical characteristics of PCa and the presence of the different polymorphism genotypes by using the Minitab software. There was a significant association between the genotype G/G from the polymorphism rs6983267 with an overall increased risk of PCa, in patients both with or without family history of PCa (OR = 4.47, 95% CI = 1.05-18.94, P = 0.034 and OR = 3.57, 95% CI = 0.96-13.35, P = 0.037, respectively). Regarding clinical parameters, patients carrying the genotype C/C from the polymorphism Asp541Glu had significantly higher prostate-specific antigen (PSA) levels than patients carrying the other genotypes (P = 0.034). Moreover, patients with the genotype G/G of rs6983267 had higher PSA levels (P = 0.024). The polymorphism rs6983267 from region 3 of the chromosome 8q24 appears to be a prominent risk factor for PCa and a biomarker for cancer aggressiveness in the group of patients who presented higher levels of PSA at the time of diagnosis.


Subject(s)
Chromosomes, Human, Pair 8/genetics , Endoribonucleases/genetics , Prostatic Neoplasms/genetics , Aged , Case-Control Studies , Chile , Gene Frequency , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Male , Middle Aged , Neoplasm Grading , Polymorphism, Single Nucleotide , Prostatic Neoplasms/pathology , Risk , Sequence Analysis, DNA , Tumor Burden
17.
Am J Physiol Endocrinol Metab ; 304(11): E1131-9, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23548616

ABSTRACT

Forty years ago, Judah Folkman (Folkman. N Engl J Med 285: 1182-1186, 1971) proposed that tumor growth might be controlled by limiting formation of new blood vessels (angiogenesis) needed to supply a growing tumor with oxygen and nutrients. To this end, numerous "antiangiogenic" agents have been developed and tested for therapeutic efficacy in cancer patients, including prostate cancer (CaP) patients, with limited success. Despite the lack of clinical efficacy of lead anti-angiogenic therapeutics in CaP patients, recent published evidence continues to support the idea that prostate tumor vasculature provides a reasonable target for development of new therapeutics. Particularly relevant to antiangiogenic therapies targeted to the prostate is the observation that specific hormones can affect the survival and vascular function of prostate endothelial cells within normal and malignant prostate tissues. Here, we review the evidence demonstrating that both androgen(s) and vitamin D significantly impact the growth and survival of endothelial cells residing within prostate cancer and that systemic changes in circulating androgen or vitamin D drastically affect blood flow and vascularity of prostate tissue. Furthermore, recent evidence will be discussed about the expression of the receptors for both androgen and vitamin D in prostate endothelial cells that argues for direct effects of these hormone-activated receptors on the biology of endothelial cells. Based on this literature, we propose that prostate tumor vasculature represents an unexplored target for modulation of tumor growth. A better understanding of androgen and vitamin D effects on prostate endothelial cells will support development of more effective angiogenesis-targeting therapeutics for CaP patients.


Subject(s)
Endothelial Cells/metabolism , Prostate/metabolism , Prostatic Neoplasms/metabolism , Receptors, Androgen/metabolism , Receptors, Calcitriol/metabolism , Endothelial Cells/pathology , Humans , Male , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Prostate/blood supply , Prostate/pathology , Prostatic Neoplasms/pathology
18.
Histochem Cell Biol ; 139(2): 233-47, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22990596

ABSTRACT

Isoform 1 of the sodium-vitamin C co-transporter (SVCT1) is expressed in the apical membrane of proximal tubule epithelial cells in adult human and mouse kidneys. This study is aimed at analyzing the expression and function of SVCTs during kidney development. RT-PCR and immunohistochemical analyses revealed that SVCT1 expression is increased progressively during postnatal kidney development. However, SVCT1 transcripts were barely detected, if not absent, in the embryonic kidney. Instead, the high-affinity transporter, isoform 2 (SVCT2), was strongly expressed in the developing kidney from E15; its expression decreased at postnatal stages. Immunohistochemical analyses showed a dynamic distribution of SVCT2 in epithelial cells during kidney development. In renal cortex tubular epithelial cells, intracellular distribution of SVCT2 was observed at E19 with distribution in the basolateral membrane at P1. In contrast, SVCT2 was localized to the apical and basolateral membranes between E17 and E19 in medullary kidney tubular cells but was distributed intracellularly at P1. In agreement with these findings, functional expression of SVCT2, but not SVCT1 was detected in human embryonic kidney-derived (HEK293) cells. In addition, kinetic analysis suggested that an ascorbate-dependent mechanism accounts for targeted SVCT2 expression in the developing kidney during medullary epithelial cell differentiation. However, during cortical tubular differentiation, SVCT1 was induced and localized to the apical membrane of tubular epithelial cells. SVCT2 showed a basolateral polarization only for the first days of postnatal life. These studies suggest that the uptake of vitamin C mediated by different SVCTs plays differential roles during the ontogeny of kidney tubular epithelial cells.


Subject(s)
Kidney/growth & development , Kidney/metabolism , Sodium-Coupled Vitamin C Transporters/metabolism , Animals , Ascorbic Acid/metabolism , Cell Membrane/chemistry , Cell Membrane/metabolism , Cells, Cultured , HEK293 Cells , Humans , Kidney/embryology , Kinetics , Male , Mice , Mice, Inbred C57BL , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sodium-Coupled Vitamin C Transporters/analysis , Sodium-Coupled Vitamin C Transporters/genetics
19.
Biochem Biophys Res Commun ; 423(3): 564-70, 2012 Jul 06.
Article in English | MEDLINE | ID: mdl-22695118

ABSTRACT

Androgen receptor (AR) is required for the development and progression of prostate cancer (CaP) from androgen-dependence to androgen-resistance. Both corepressors and coactivators regulate AR-mediated transcriptional activity, and aberrant expression or activity due to mutation(s) contributes to changes in AR function in the progression to androgen resistance acquired during hormonal ablation therapies. Primary culture of epithelial cells from androgen-dependent CWR22 and androgen-resistant CWR22R xenograft tumors were used to evaluate the effect of androgens on AR function, and the association with coactivators (SRC-1 and TIF-2) and corepressors (SMRT and NCoR). Both androgen-dependent CWR22 and androgen-resistant CWR22R cells expressed functional AR as the receptor bind ligand with high affinity and increased trafficking to the nuclei in the presence of androgens. However, in the presence of androgens, AR-mediated transcriptional activity in androgen-sensitive CWR22 cells was limited to a 2-fold increase, as compared to a 6-fold increase in androgen-resistance CWR22R cells. In androgen-sensitive CWR22 cells, immunoblot, confocal microscopy, and chromatin immunoprecipitation assays indicated that the androgen bound AR transcriptional initiation complex in the PSA promoter contained corepressor SMRT, resulting in limited receptor transcriptional activity. In contrast, increased AR-mediated transcriptional activity in the CWR22R cells was consistent with decreased expression and recruitment of the corepressors SMRT/NCoR, as well as increased recruitment of the coactivator TIF-2 to the receptor complex. Similar changes in the response to androgens were observed in the LNCaP/C4-2 model of androgen resistance prostate cancer. Thus, altered recruitment and loss of corepressors SMRT/NCoR may provide a mechanism that changes the response of AR function to ligands and contributes to the progression of the advanced stages of human prostate cancer.


Subject(s)
Androgens/metabolism , Gene Expression Regulation, Neoplastic , Nuclear Receptor Co-Repressor 2/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Androgens/pharmacology , Animals , Cell Line , Cell Line, Tumor , Disease Progression , Humans , Male , Mice , Neoplasm Transplantation , Nuclear Receptor Co-Repressor 2/genetics , Rabbits
20.
PLoS One ; 7(5): e37203, 2012.
Article in English | MEDLINE | ID: mdl-22629369

ABSTRACT

BACKGROUND: Despite a high response rate to chemotherapy, the majority of patients with acute myeloid leukemia (AML) are destined to relapse due to residual disease in the bone marrow (BM). The tumor microenvironment is increasingly being recognized as a critical factor in mediating cancer cell survival and drug resistance. In this study, we propose to identify mechanisms involved in the chemoprotection conferred by the BM stroma to leukemia cells. METHODS: Using a leukemia mouse model and a human leukemia cell line, we studied the interaction of leukemia cells with the BM microenvironment. We evaluated in vivo and in vitro leukemia cell chemoprotection to different cytotoxic agents mediated by the BM stroma. Leukemia cell apoptosis was assessed by flow cytometry and western blotting. The activity of the equilibrative nucleoside transporter 1 (ENT1), responsible for cytarabine cell incorporation, was investigated by measuring transport and intracellular accumulation of (3)H-adenosine. RESULTS: Leukemia cell mobilization from the bone marrow into peripheral blood in vivo using a CXCR4 inhibitor induced chemo-sensitization of leukemia cells to cytarabine, which translated into a prolonged survival advantage in our mouse leukemia model. In vitro, the BM stromal cells secreted a soluble factor that mediated significant chemoprotection to leukemia cells from cytarabine induced apoptosis. Furthermore, the BM stromal cell supernatant induced a 50% reduction of the ENT1 activity in leukemia cells, reducing the incorporation of cytarabine. No protection was observed when radiation or other cytotoxic agents such as etoposide, cisplatin and 5-fluorouracil were used. CONCLUSION: The BM stroma secretes a soluble factor that significantly protects leukemia cells from cytarabine-induced apoptosis and blocks ENT1 activity. Strategies that modify the chemo-protective effects mediated by the BM microenvironment may enhance the benefit of conventional chemotherapy for patients with AML.


Subject(s)
Antimetabolites, Antineoplastic/pharmacology , Apoptosis/drug effects , Bone Marrow Cells/metabolism , Cytarabine/pharmacology , Equilibrative Nucleoside Transporter 1/metabolism , Leukemia, Myeloid, Acute/drug therapy , Animals , Antimetabolites, Antineoplastic/therapeutic use , Apoptosis/physiology , Bone Marrow Cells/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cytarabine/therapeutic use , Humans , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Mice , Stromal Cells/drug effects , Stromal Cells/metabolism , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...