Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Function (Oxf) ; 5(1): zqad069, 2024.
Article in English | MEDLINE | ID: mdl-38162115

ABSTRACT

Cannabinoids are a major class of compounds produced by the plant Cannabis sativa. Previous work has demonstrated that the main cannabinoids cannabidiol (CBD) and tetrahydrocannabinol (THC) can have some beneficial effects on pain, inflammation, epilepsy, and chemotherapy-induced nausea and vomiting. While CBD and THC represent the two major plant cannabinoids, some hemp varieties with enzymatic deficiencies produce mainly cannabigerolic acid (CBGA). We recently reported that CBGA has a potent inhibitory effect on both Store-Operated Calcium Entry (SOCE) via inhibition of Calcium Release-Activated Calcium (CRAC) channels as well as currents carried by the channel-kinase TRPM7. Importantly, CBGA prevented kidney damage and suppressed mRNA expression of inflammatory cytokines through inhibition of these mechanisms in an acute nephropathic mouse model. In the present study, we investigate the most common major and minor cannabinoids to determine their potential efficacy on TRPM7 channel function. We find that approximately half of the tested cannabinoids suppress TRPM7 currents to some degree, with CBGA having the strongest inhibitory effect on TRPM7. We determined that the CBGA-mediated inhibition of TRPM7 requires a functional kinase domain, is sensitized by both intracellular Mg⋅ATP and free Mg2+ and reduced by increases in intracellular Ca2+. Finally, we demonstrate that CBGA inhibits native TRPM7 channels in a B lymphocyte cell line. In conclusion, we demonstrate that CBGA is the most potent cannabinoid in suppressing TRPM7 activity and possesses therapeutic potential for diseases in which TRPM7 is known to play an important role such as cancer, stroke, and kidney disease.


Subject(s)
Cannabinoids , TRPM Cation Channels , Animals , Mice , Cannabinoids/pharmacology , TRPM Cation Channels/antagonists & inhibitors
2.
Function (Oxf) ; 3(4): zqac033, 2022.
Article in English | MEDLINE | ID: mdl-35910331

ABSTRACT

Cannabis sativa has long been known to affect numerous biological activities. Although plant extracts, purified cannabinoids, or synthetic cannabinoid analogs have shown therapeutic potential in pain, inflammation, seizure disorders, appetite stimulation, muscle spasticity, and treatment of nausea/vomiting, the underlying mechanisms of action remain ill-defined. In this study we provide the first comprehensive overview of the effects of whole-plant Cannabis extracts and various pure cannabinoids on store-operated calcium (Ca2+) entry (SOCE) in several different immune cell lines. Store-operated Ca2+ entry is one of the most significant Ca2+ influx mechanisms in immune cells, and it is critical for the activation of T lymphocytes, leading to the release of proinflammatory cytokines and mediating inflammation and T cell proliferation, key mechanisms for maintaining chronic pain. While the two major cannabinoids cannabidiol and trans-Δ9-tetrahydrocannabinol were largely ineffective in inhibiting SOCE, we report for the first time that several minor cannabinoids, mainly the carboxylic acid derivatives and particularly cannabigerolic acid, demonstrated high potency against SOCE by blocking calcium release-activated calcium currents. Moreover, we show that this inhibition of SOCE resulted in a decrease of nuclear factor of activated T-cells activation and Interleukin 2 production in human T lymphocytes. Taken together, these results indicate that cannabinoid-mediated inhibition of a proinflammatory target such as SOCE may at least partially explain the anti-inflammatory and analgesic effects of Cannabis.


Subject(s)
Cannabinoids , Cytokines , Humans , Cytokines/metabolism , Calcium/metabolism , Cannabinoids/pharmacology , Calcium Signaling , Inflammation/drug therapy
4.
Cell Commun Signal ; 15(1): 30, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28810912

ABSTRACT

BACKGROUND: Magnesium (Mg2+) is an essential cation implicated in carcinogenesis, solid tumor progression and metastatic potential. The Transient Receptor Potential Melastatin Member 7 (TRPM7) is a divalent ion channel involved in cellular and systemic Mg2+ homeostasis. Abnormal expression of TRPM7 is found in numerous cancers, including colon, implicating TRPM7 in this process. METHODS: To establish a possible link between systemic magnesium (Mg2+) status, the Mg2+ conducting channel TRPM7 in colon epithelial cells, and colon carcinogenesis, in vitro whole-cell patch clamp electrophysiology, qPCR, and pharmacological tools were used probing human colorectal adenocarcinoma HT-29 as well as normal primary mouse colon epithelial cells. This was extended to and combined with aberrant crypt foci development in an azoxymethane-induced colorectal cancer mouse model under hypomagnesemia induced by diet or pharmacologic intervention. RESULTS: We find that TRPM7 drives colon cancer cell proliferation in human HT-29 and expresses in normal primary mouse colon epithelia. This is linked to TRPM7's dominant role as Mg2+ transporter, since high extracellular Mg2+ supplementation cannot rescue inhibition of cell proliferation caused by suppressing TRPM7 either genetically or pharmacologically. In vivo experiments in mice provide evidence that the specific TRPM7 inhibitor waixenicin A, given as a single bolus injection, induces transient hypomagnesemia and increases intestinal absorption of calcium. Repeated injections of waixenicin A over 3 weeks cause hypomagnesemia via insufficient Mg2+ absorption by the colon. However, neither waixenicin A, nor a diet low in Mg2+, affect aberrant crypt foci development in an azoxymethane-induced colorectal cancer mouse model. CONCLUSION: Early stage colon cancer proceeds independent of systemic Mg2+ status and TRPM7, and waixenicin A is a useful pharmacological tool to study of TRPM7 in vitro and in vivo.


Subject(s)
Adenocarcinoma/metabolism , Cell Proliferation/drug effects , Colonic Neoplasms/metabolism , Magnesium Deficiency/metabolism , TRPM Cation Channels/antagonists & inhibitors , Acetates/pharmacology , Adenocarcinoma/etiology , Animals , Azoxymethane/toxicity , Calcium/metabolism , Cells, Cultured , Colonic Neoplasms/etiology , Diterpenes/pharmacology , HT29 Cells , Humans , Intestinal Absorption , Magnesium Deficiency/blood , Magnesium Deficiency/etiology , Male , Mice , Mice, Inbred C57BL
5.
Pflugers Arch ; 460(1): 69-76, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20393858

ABSTRACT

Insulin secretion in beta-pancreatic cells due to glucose stimulation requires the coordinated alteration of cellular ion concentrations and a substantial membrane depolarization to enable insulin vesicle fusion with the cellular membrane. The cornerstones of this cascade are well characterized, yet current knowledge argues for the involvement of additional ion channels in this process. TRPM5 is a cation channel expressed in beta-cells and proposed to be involved in coupling intracellular Ca(2+) release to electrical activity and cellular responses. Here, we report that TRPM5 acts as an indispensable regulator of insulin secretion. In vivo glucose tolerance tests showed that Trpm5 (-/-) -mice maintain elevated blood glucose levels for over an hour compared to wild-type littermates, while insulin sensitivity is normal in Trpm5 (-/-) -mice. In pancreatic islets isolated from Trpm5 (-/-) -mice, hyperglycemia as well as arginine-induced insulin secretion was diminished. The presented results describe a major role for TRPM5 in glucose-induced insulin secretion beyond membrane depolarization. Dysfunction of the TRPM5 protein could therefore be an important factor in the etiology of some forms of type 2 diabetes, where disruption of the normal pattern of secretion is observed.


Subject(s)
Blood Glucose/metabolism , Insulin/metabolism , Islets of Langerhans/metabolism , TRPM Cation Channels/metabolism , Animals , Arginine/metabolism , Glucose Tolerance Test , Humans , Hyperglycemia/metabolism , Hyperglycemia/physiopathology , Hyperglycemia/prevention & control , Injections, Intraperitoneal , Insulin/administration & dosage , Insulin Secretion , Membrane Potentials , Mice , Mice, Knockout , TRPM Cation Channels/deficiency , TRPM Cation Channels/genetics , Time Factors , Tissue Culture Techniques
6.
Cell Calcium ; 45(4): 326-30, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19157540

ABSTRACT

The store-operated, calcium release-activated calcium current I(CRAC) is activated by the depletion of inositol 1,4,5-trisphosphate (IP(3))-sensitive stores. The significantly different dose-response relationships of IP(3)-mediated Ca(2+) release and CRAC channel activation indicate that I(CRAC) is activated by a functionally, and possibly physically, distinct sub-compartment of the endoplasmic reticulum (ER), the so-called CRAC store. Vertebrate genomes contain three IP(3) receptor (IP(3)R) genes and most cells express at least two subtypes, but the functional relevance of various IP(3)R subtypes with respect to store-operated Ca(2+) entry is completely unknown. We here demonstrate in avian B cells (chicken DT40) that IP(3)R type II and type III participate in IP(3)-induced activation of I(CRAC), but IP(3)R type I does not. This suggests that the expression pattern of IP(3)R contributes to the formation of specialized CRAC stores in B cells.


Subject(s)
Calcium Signaling , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Animals , Calcium Signaling/drug effects , Cell Line , Chickens , Inositol 1,4,5-Trisphosphate/pharmacology , Ion Channel Gating/drug effects , Ionomycin/pharmacology
7.
FASEB J ; 22(3): 752-61, 2008 Mar.
Article in English | MEDLINE | ID: mdl-17905723

ABSTRACT

STIM1 and CRACM1 (or Orai1) are essential molecular components mediating store-operated Ca2+ entry (SOCE) and Ca2+ release-activated Ca2+ (CRAC) currents. Although STIM1 acts as a luminal Ca2+ sensor in the endoplasmic reticulum (ER), the function of STIM2 remains unclear. Here we reveal that STIM2 has two distinct modes of activating CRAC channels: a store-operated mode that is activated through depletion of ER Ca2+ stores by inositol 1,4,5-trisphosphate (InsP3) and store-independent activation that is mediated by cell dialysis during whole-cell perfusion. Both modes are regulated by calmodulin (CaM). The store-operated mode is transient in intact cells, possibly reflecting recruitment of CaM, whereas loss of CaM in perfused cells accounts for the persistence of the store-independent mode. The inhibition by CaM can be reversed by 2-aminoethoxydiphenyl borate (2-APB), resulting in rapid, store-independent activation of CRAC channels. The aminoglycoside antibiotic G418 is a highly specific and potent inhibitor of STIM2-dependent CRAC channel activation. The results reveal a novel bimodal control of CRAC channels by STIM2, the store dependence and CaM regulation, which indicates that the STIM2/CRACM1 complex may be under the control of both luminal and cytoplasmic Ca2+ levels.


Subject(s)
Calcium Channels/metabolism , Calcium/physiology , Calmodulin/physiology , Cell Adhesion Molecules/physiology , Membrane Proteins/physiology , Calcium Channels/drug effects , Calcium Channels/physiology , Calmodulin/genetics , Cell Adhesion Molecules/genetics , Cell Line , Cytoplasm/physiology , Humans , Membrane Proteins/genetics , ORAI1 Protein , Stromal Interaction Molecule 2 , Up-Regulation
8.
Curr Biol ; 17(9): 794-800, 2007 May 01.
Article in English | MEDLINE | ID: mdl-17442569

ABSTRACT

STIM1 in the endoplasmic reticulum and CRACM1 in the plasma membrane are essential molecular components for controlling the store-operated CRAC current. CRACM1 proteins multimerize and bind STIM1, and the combined overexpression of STIM1 and CRACM1 reconstitutes amplified CRAC currents. Mutations in CRACM1 determine the selectivity of CRAC currents, demonstrating that CRACM1 forms the CRAC channel's ion-selective pore, but the CRACM1 homologs CRACM2 and CRACM3 are less well characterized. Here, we show that both CRACM2 and CRACM3, when overexpressed in HEK293 cells stably expressing STIM1, potentiate I(CRAC) to current amplitudes 15-20 times larger than native I(CRAC). A nonconducting mutation of CRACM1 (E106Q) acts as a dominant negative for all three CRACM homologs, suggesting that they can form heteromultimeric channel complexes. All three CRACM homologs exhibit distinct properties in terms of selectivity for Ca(2+) and Na(+), differential pharmacological effects in response to 2-APB, and strikingly different feedback regulation by intracellular Ca(2+). Each of the CRAC channel proteins' specific functional features and the potential heteromerization provide for flexibility in shaping Ca(2+) signals, and their characteristic biophysical and pharmacological properties will aid in identifying CRAC-channel species in native cells that express them.


Subject(s)
Calcium Channels/metabolism , Membrane Proteins/metabolism , Multiprotein Complexes/metabolism , Neoplasm Proteins/metabolism , Boron Compounds , Calcium/metabolism , Calcium Channels/genetics , Cell Line , Humans , Membrane Potentials/physiology , Mutation/genetics , ORAI1 Protein , Stromal Interaction Molecule 1
9.
Cell Calcium ; 41(3): 249-60, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17064762

ABSTRACT

Calcium signaling is a central mechanism for numerous cellular functions and particularly relevant for immune cell proliferation. However, the role of calcium influx in mitotic cell cycle progression is largely unknown. We here report that proliferating rat mast cells RBL-2H3 tightly control their major store-operated calcium influx pathway, I(CRAC), during cell cycle progression. While I(CRAC) is maintained at control levels during the first gap phase (G1), the current is significantly up-regulated in preparation for and during chromatin duplication. However, mitosis strongly suppresses I(CRAC). Non-proliferating cells deprived of growth hormones strongly down-regulate I(CRAC) while increasing cell volume. We further show that the other known calcium (and magnesium) influx pathway in mast cells, the TRPM7-like magnesium-nucleotide-regulated metal (MagNuM) current, is largely uncoupled from cell cycle regulation except in G1. Taken together, our results demonstrate that both store-operated calcium influx via I(CRAC) and MagNuM are regulated at crucial checkpoints during cell cycle progression.


Subject(s)
Calcium Channels/metabolism , Calcium Signaling/physiology , G1 Phase/physiology , Magnesium/metabolism , Mast Cells/metabolism , TRPM Cation Channels/metabolism , Animals , Calcium Signaling/drug effects , Cell Line , G1 Phase/drug effects , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/pharmacology , Rats
10.
Proc Natl Acad Sci U S A ; 100(25): 15166-71, 2003 Dec 09.
Article in English | MEDLINE | ID: mdl-14634208

ABSTRACT

Transient receptor potential (TRP) proteins are a diverse family of proteins with structural features typical of ion channels. TRPM5, a member of the TRPM subfamily, plays an important role in taste receptors, although its activation mechanism remains controversial and its function in signal transduction is unknown. Here we characterize the functional properties of heterologously expressed human TRPM5 in HEK-293 cells. TRPM5 displays characteristics of a calcium-activated, nonselective cation channel with a unitary conductance of 25 pS. TRPM5 is a monovalent-specific, nonselective cation channel that carries Na+, K+, and Cs+ ions equally well, but not Ca2+ ions. It is directly activated by [Ca2+]i at concentrations of 0.3-1 microM, whereas higher concentrations are inhibitory, resulting in a bell-shaped dose-response curve. It activates and deactivates rapidly even during sustained elevations in [Ca2+]i, thereby inducing a transient membrane depolarization. TRPM5 does not simply mirror levels of [Ca2+]i, but instead responds to the rate of change in [Ca2+]i in that it requires rapid changes in [Ca2+]i to generate significant whole-cell currents, whereas slow elevations in [Ca2+]i to equivalent levels are ineffective. Moreover, we demonstrate that TRPM5 is not limited to taste signal transduction, because we detect the presence of TRPM5 in a variety of tissues and we identify endogenous TRPM5-like currents in a pancreatic beta cell line. TRPM5 can be activated physiologically by inositol 1,4,5-trisphosphate-producing receptor agonists, and it may therefore couple intracellular Ca2+ release to electrical activity and subsequent cellular responses.


Subject(s)
Calcium/metabolism , Membrane Proteins/physiology , Taste , Animals , Calcium/pharmacology , Calcium Channels/physiology , Cations , Cell Line , Cell Membrane/metabolism , DNA, Complementary/metabolism , Dose-Response Relationship, Drug , Electrophysiology , Humans , Ion Channels/metabolism , Islets of Langerhans/metabolism , Membrane Proteins/metabolism , Patch-Clamp Techniques , Rats , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction , TRPM Cation Channels , Taste Buds/metabolism , Time Factors
11.
J Gen Physiol ; 121(1): 49-60, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12508053

ABSTRACT

Trace metal ions such as Zn(2+), Fe(2+), Cu(2+), Mn(2+), and Co(2+) are required cofactors for many essential cellular enzymes, yet little is known about the mechanisms through which they enter into cells. We have shown previously that the widely expressed ion channel TRPM7 (LTRPC7, ChaK1, TRP-PLIK) functions as a Ca(2+)- and Mg(2+)-permeable cation channel, whose activity is regulated by intracellular Mg(2+) and Mg(2+).ATP and have designated native TRPM7-mediated currents as magnesium-nucleotide-regulated metal ion currents (MagNuM). Here we report that heterologously overexpressed TRPM7 in HEK-293 cells conducts a range of essential and toxic divalent metal ions with strong preference for Zn(2+) and Ni(2+), which both permeate TRPM7 up to four times better than Ca(2+). Similarly, native MagNuM currents are also able to support Zn(2+) entry. Furthermore, TRPM7 allows other essential metals such as Mn(2+) and Co(2+) to permeate, and permits significant entry of nonphysiologic or toxic metals such as Cd(2+), Ba(2+), and Sr(2+). Equimolar replacement studies substituting 10 mM Ca(2+) with the respective divalent ions reveal a unique permeation profile for TRPM7 with a permeability sequence of Zn(2+) approximately Ni(2+) >> Ba(2+) > Co(2+) > Mg(2+) >/= Mn(2+) >/= Sr(2+) >/= Cd(2+) >/= Ca(2+), while trivalent ions such as La(3+) and Gd(3+) are not measurably permeable. With the exception of Mg(2+), which exerts strong negative feedback from the intracellular side of the pore, this sequence is faithfully maintained when isotonic solutions of these divalent cations are used. Fura-2 quenching experiments with Mn(2+), Co(2+), or Ni(2+) suggest that these can be transported by TRPM7 in the presence of physiological levels of Ca(2+) and Mg(2+), suggesting that TRPM7 represents a novel ion-channel mechanism for cellular metal ion entry into vertebrate cells.


Subject(s)
Ion Channels/metabolism , Membrane Proteins , Protein Kinases/metabolism , Trace Elements/metabolism , Animals , Cell Line , Humans , Ion Channel Gating/drug effects , Ion Channel Gating/physiology , Ion Channels/genetics , Ions , Membrane Potentials/drug effects , Membrane Potentials/physiology , Mice , Protein Kinases/genetics , Protein Serine-Threonine Kinases , TRPM Cation Channels , Trace Elements/pharmacology , Transfection
12.
J Physiol ; 539(Pt 2): 445-58, 2002 Mar 01.
Article in English | MEDLINE | ID: mdl-11882677

ABSTRACT

Rat basophilic leukaemia cells (RBL-2H3-M1) were used to study the characteristics of the store-operated Ca(2+) release-activated Ca(2+) current (I(CRAC)) and the magnesium-nucleotide-regulated metal cation current (MagNuM) (which is conducted by the LTRPC7 channel). Pipette solutions containing 10 mM BAPTA and no added ATP induced both currents in the same cell, but the time to half-maximal activation for MagNuM was about two to three times slower than that of I(CRAC). Differential suppression of I(CRAC) was achieved by buffering free [Ca(2+)](i) to 90 nM and selective inhibition of MagNuM was accomplished by intracellular solutions containing 6 mM Mg.ATP, 1.2 mM free [Mg(2+)](i) or 100 microM GTP-gamma-S, allowing investigations on these currents in relative isolation. Removal of extracellular Ca(2+) and Mg(2+) caused both currents to be carried significantly by monovalent ions. In the absence or presence of free [Mg(2+)](i), I(CRAC) carried by monovalent ions inactivated more rapidly and more completely than MagNuM carried by monovalent ions. Since several studies have used divalent-free solutions on either side of the membrane to study selectivity and single-channel behaviour of I(CRAC), these experimental conditions would have favoured the contribution of MagNuM to monovalent conductance and call for caution in interpreting results where both I(CRAC) and MagNuM are activated.


Subject(s)
Calcium Channels/metabolism , Adenosine Triphosphate/physiology , Animals , Biotransformation/drug effects , Calcium Channels/drug effects , Cations, Monovalent/metabolism , Electrophysiology , Guanosine 5'-O-(3-Thiotriphosphate)/pharmacology , Kinetics , Leukemia, Basophilic, Acute/metabolism , Magnesium/pharmacology , Mast Cells/drug effects , Mast Cells/metabolism , Patch-Clamp Techniques , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...