Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Sci Technol ; 55(10): 4090-4098, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30228407

ABSTRACT

This study aimed to evaluate the technical feasibility of supercritical carbon dioxide (sc-CO2) treatment for Vibrio parahaemolyticus inactivation in oysters (Crassostrea gigas) and in nutrient broth. For this purpose, a variable-volume reactor was used as experimental system and a 23 factorial design was adopted considering the mass ratio between carbon dioxide and the product, pressurization and depressurization rate and pressurization cycles. Through statistical analysis of the experimental data, the mass ratio of 1:0.8 (product:carbon dioxide), depressurization rate of 10.0 MPa/min and one cycle of pressurization was determined as the best process condition to eliminate V. parahaemolyticus, and this was the condition used for the inactivation kinetic analysis. Comparison between the inactivation kinetics of V. parahaemolyticus showed that the behavior of this microorganism inactivation depends on the environment in which it operates and its initial count. The results confirm that the supercritical carbon dioxide is effective in inactivating microorganisms in oysters, including pathogenic V. parahaemolyticus, demonstrating the potential of this technology in the food industry.

2.
Food Chem ; 173: 755-62, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25466086

ABSTRACT

Active biofilms of quinoa (Chenopodium quinoa, W.) starch were prepared by incorporating gold nanoparticles stabilised by an ionic silsesquioxane that contains the 1,4-diazoniabicyclo[2.2.2]octane chloride group. The biofilms were characterised and their antimicrobial activity was evaluated against Escherichiacoli and Staphylococcusaureus. The presence of gold nanoparticles produces an improvement in the mechanical, optical and morphological properties, maintaining the thermal and barrier properties unchanged when compared to the standard biofilm. The active biofilms exhibited strong antibacterial activity against food-borne pathogens with inhibition percentages of 99% against E. coli and 98% against S. aureus. These quinoa starch biofilms containing gold nanoparticles are very promising to be used as active food packaging for the maintenance of food safety and extension of the shelf life of packaged foods.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Chenopodium quinoa/chemistry , Metal Nanoparticles/chemistry , Starch/chemistry , Anti-Bacterial Agents/chemistry , Escherichia coli/drug effects , Food Packaging , Gold/chemistry , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Staphylococcus aureus/drug effects
3.
Int J Food Microbiol ; 166(3): 391-8, 2013 Sep 16.
Article in English | MEDLINE | ID: mdl-24026010

ABSTRACT

The antifungal activity of food additives or 'generally recognized as safe' (GRAS) compounds was tested in vitro against Botrytis cinerea and Alternaria alternata. Radial mycelial growth of each pathogen was measured in PDA Petri dishes amended with food preservatives at 0.2, 1.0, or 2.0% (v/v) after 3, 5, and 7 days of incubation at 25 °C. Selected additives and concentrations were tested as antifungal ingredients of hydroxypropyl methylcellulose (HPMC)-lipid edible coatings. The curative activity of stable coatings was tested in in vivo experiments. Cherry tomatoes were artificially inoculated with the pathogens, coated by immersion about 24 h later, and incubated at 20 °C and 90% RH. Disease incidence and severity (lesion diameter) were determined after 6, 10, and 15 days of incubation and the 'area under the disease progress stairs' (AUDPS) was calculated. In general, HPMC-lipid antifungal coatings controlled black spot caused by A. alternata more effectively than gray mold caused by B. cinerea. Overall, the best results for reduction of gray mold on cherry tomato fruit were obtained with coatings containing 2.0% of potassium carbonate, ammonium phosphate, potassium bicarbonate, or ammonium carbonate, while 2.0% sodium methylparaben, sodium ethylparaben, and sodium propylparaben were the best ingredients for coatings against black rot.


Subject(s)
Alternaria/drug effects , Botrytis/drug effects , Food Additives/pharmacology , Fruit/microbiology , Solanum lycopersicum/microbiology , Alternaria/growth & development , Antifungal Agents/pharmacology , Botrytis/growth & development , Food Preservatives/chemistry , Food Preservatives/pharmacology , Time
SELECTION OF CITATIONS
SEARCH DETAIL
...