Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Sci Eng C Mater Biol Appl ; 83: 25-34, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29208285

ABSTRACT

Cancer is one of the leading causes of morbidity and mortality Worldwide, 19.3 million new cancer cases are expected to be identified in 2025. Among the therapeutic arsenal to cancer control one could find the Doxycycline and the nano hydroxyapatite. The Doxycycline (Dox) not only shown antibiotic effect but also exhibits a wide range of pleiotropic therapeutic properties as the control of the invasive and metastatic cancer cells characteristics. The purpose of the present study was to evaluate both cytotoxicity in vitro and antibacterial activity of electrospun Dox-loaded hybrid nanofibrous scaffolds composed by hydroxyapatite nanoparticles (nHA), poly-ε-caprolactone (PCL) and gelatin (Gel) polymers. Both nHA and Dox were dispersed into different PCL/Gel ratios (70:30, 60:40, 50:50wt%) solutions to form electrospun nanofibers. The nHA and Dox/nHA/PCL-Gel hybrid nanofibers were characterized by TEM microscopy. In vitro Dox release behavior from all of these Dox-loaded nHA/PCL-Gel nanofibers showed the same burst release profile due to the high solubility of Gel in the release medium. Antibacterial properties of nanofiber composites were evaluated using Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Porphyromonas gingivalis (P. gingivalis) bacteria. The co-delivery of nHA particles and Dox simultaneously exhibited inhibition of bacterial growth more efficiently than the delivery of either Dox or nHA at the same concentrations, indicating a synergistic effect. The results showed that cancer cell tested had different sensibility to co-delivery system. On the whole, A-431 cells were found exhibited the most pronounced synergistic effect compared to CACO-2 and 4T1 cancer cells. Based on the anticancer as well as the antimicrobial results in this study, the developed Dox/nHA/PCL-Gel composite nanofibers are suitable as a drug delivery system with potential applications in the biomedical fields.


Subject(s)
Anti-Bacterial Agents/chemistry , Caproates/chemistry , Doxycycline/chemistry , Durapatite/chemistry , Gelatin/chemistry , Lactones/chemistry , Nanofibers/chemistry , Nanoparticles/chemistry , Antineoplastic Agents/chemistry , Caco-2 Cells , Drug Delivery Systems , Drug Synergism , Humans , Nanofibers/ultrastructure , Nanoparticles/ultrastructure
2.
PLoS One ; 5(12): e14298, 2010 Dec 13.
Article in English | MEDLINE | ID: mdl-21179206

ABSTRACT

BACKGROUND: The tubule-interstitial fibrosis is the hallmark of progressive renal disease and is strongly associated with inflammation of this compartment. Heme-oxygenase-1 (HO-1) is a cytoprotective molecule that has been shown to be beneficial in various models of renal injury. However, the role of HO-1 in reversing an established renal scar has not yet been addressed. AIM: We explored the ability of HO-1 to halt and reverse the establishment of fibrosis in an experimental model of chronic renal disease. METHODS: Sprague-Dawley male rats were subjected to unilateral ureteral obstruction (UUO) and divided into two groups: non-treated and Hemin-treated. To study the prevention of fibrosis, animals were pre-treated with Hemin at days -2 and -1 prior to UUO. To investigate whether HO-1 could reverse established fibrosis, Hemin therapy was given at days 6 and 7 post-surgery. After 7 and/or 14 days, animals were sacrificed and blood, urine and kidney tissue samples were collected for analyses. Renal function was determined by assessing the serum creatinine, inulin clearance, proteinuria/creatininuria ratio and extent of albuminuria. Arterial blood pressure was measured and fibrosis was quantified by Picrosirius staining. Gene and protein expression of pro-inflammatory and pro-fibrotic molecules, as well as HO-1 were performed. RESULTS: Pre-treatment with Hemin upregulated HO-1 expression and significantly reduced proteinuria, albuminuria, inflammation and pro-fibrotic protein and gene expressions in animals subjected to UUO. Interestingly, the delayed treatment with Hemin was also able to reduce renal dysfunction and to decrease the expression of pro-inflammatory molecules, all in association with significantly reduced levels of fibrosis-related molecules and collagen deposition. Finally, TGF-ß protein production was significantly lower in Hemin-treated animals. CONCLUSION: Treatment with Hemin was able both to prevent the progression of fibrosis and to reverse an established renal scar. Modulation of inflammation appears to be the major mechanism behind HO-1 cytoprotection.


Subject(s)
Fibrosis/metabolism , Heme Oxygenase-1/biosynthesis , Hemin/pharmacology , Kidney Tubules/metabolism , Animals , Disease Models, Animal , Disease Progression , Enzyme-Linked Immunosorbent Assay/methods , Gene Expression Profiling , Immunohistochemistry/methods , Inflammation , Kidney Diseases/pathology , Male , Models, Biological , Rats , Rats, Sprague-Dawley , Transforming Growth Factor beta/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...