Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 6: 29198, 2016 07 04.
Article in English | MEDLINE | ID: mdl-27373816

ABSTRACT

Prezygotic isolating mechanisms act to limit hybridization and maintain the genetic identity of closely-related species. While synchronous intraspecific spawning is a common phenomenon amongst marine organisms and plays an important role in reproductive success, asynchronous spawning between potentially hybridizing lineages may also be important in maintaining species boundaries. We tested this hypothesis by comparing reproductive synchrony over daily to hourly timescales in a sympatric assemblage of intertidal fucoid algae containing selfing hermaphroditic (Fucus spiralis and Fucus guiryi) and dioecious (Fucus vesiculosus and Fucus serratus) species. Our results confirm that gametes are released on semi-lunar cycles in all species. However, sister species with different mating systems showed asynchronous spawning at finer circadian timescales, thus providing evidence for a partial reproductive barrier between hermaphroditic and dioecious species. Finally, our data also emphasize the ecological, developmental, and/or physiological constraints that operate to restrict reproduction to narrow temporal windows of opportunity in the intertidal zone and more generally the role of ecological factors in marine speciation.


Subject(s)
Ecosystem , Fucus/physiology , Circadian Rhythm/physiology , Periodicity , Reproduction/physiology , Species Specificity , Water Movements
2.
Mar Environ Res ; 112(Pt B): 33-9, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26183537

ABSTRACT

The timing and synchrony of gamete release in broadcast spawners have important implications for fertilization success, recruitment and to explain differences in reproductive success under distinct reproductive modes in sympatry. Our objective was to compare the reproductive timing and investment for sister species with contrasting mating systems; Fucus guiryi (selfing hermaphroditic) and Fucus vesiculosus (dioecious) in habitats with different wave exposures (exposed shore and estuary). Over two months, daily gamete release, recruitment and population structure were recorded. Our results show spawning synchrony between species and habitats, but release events in hermaphrodites occupied broader temporal windows in estuarine than exposed shore habitats. On the exposed shore both species increased the synchrony of release and amount of eggs. In the estuary, hermaphrodites relied on broader temporal spawning windows and a larger canopy, and the dioecious species had higher recruitment success, important factors determining persistence.


Subject(s)
Environment , Fucus/physiology , Population Dynamics , Portugal , Reproduction , Species Specificity
3.
J Phycol ; 51(4): 808-18, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26986798

ABSTRACT

The allocation of resources to different life-history traits should represent the best compromise in fitness investment for organisms in their local environment. When resources are limiting, the investment in a specific trait must carry a cost that is expressed in trade-offs with other traits. In this study, the relative investment in the fitness-related traits, growth, reproduction and defence were compared at central and range-edge locations, using the seaweed Ascophyllum nodosum as a model system. Individual growth rates were similar at both sites, whereas edge populations showed a higher relative investment in reproduction (demonstrated by a higher reproductive allocation and extended reproductive periods) when compared to central populations that invested more in defence. These results show the capability of A. nodosum to differentially allocate resources for different traits under different habitat conditions, suggesting that reproduction and defence have different fitness values under the specific living conditions experienced at edge and central locations. However, ongoing climate change may threaten edge populations by increasing the selective pressure on specific traits, forcing these populations to lower the investment in other traits that are also potentially important for population fitness.

4.
PLoS One ; 7(4): e35978, 2012.
Article in English | MEDLINE | ID: mdl-22563429

ABSTRACT

Sympatric assemblages of congeners with incomplete reproductive barriers offer the opportunity to study the roles that ecological and non-ecological factors play in reproductive isolation. While interspecific asynchrony in gamete release and gametic incompatibility are known prezygotic barriers to hybridization, the role of mating system variation has been emphasized in plants. Reproductive isolation between the sibling brown algal species Fucus spiralis, Fucus guiryi (selfing hermaphrodite) and Fucus vesiculosus (dioecious) was studied because they form hybrids in parapatry in the rocky intertidal zone, maintain species integrity over a broad geographic range, and have contrasting mating systems. We compared reproductive synchrony (spawning overlap) between the three species at several temporal scales (yearly/seasonal, semilunar/tidal, and hourly during single tides). Interspecific patterns of egg release were coincident at seasonal (single peak in spring to early summer) to semilunar timescales. Synthesis of available data indicated that spawning is controlled by semidiurnal tidal and daily light-dark cues, and not directly by semilunar cycles. Importantly, interspecific shifts in timing detected at the hourly scale during single tides were consistent with a partial ecological prezygotic hybridization barrier. The species displayed patterns of gamete release consistent with a power law distribution, indicating a high degree of reproductive synchrony, while the hypothesis of weaker selective constraints for synchrony in selfing versus outcrossing species was supported by observed spawning in hermaphrodites over a broader range of tidal phase than in outcrossers. Synchronous gamete release is critical to the success of external fertilization, while high-energy intertidal environments may offer only limited windows of reproductive opportunity. Within these windows, however, subtle variations in reproductive timing have evolved with the potential to form ecological barriers to hybridization.


Subject(s)
Fucus/genetics , Hybridization, Genetic , Fucus/growth & development , Gene Flow/genetics , Models, Genetic , Ovum/physiology , Portugal , Reproduction/genetics , Seasons , Species Specificity , Time Factors
5.
PLoS Pathog ; 6(5): e1000916, 2010 May 20.
Article in English | MEDLINE | ID: mdl-20502682

ABSTRACT

The spectrum of the clinical presentation and severity of malaria infections is broad, ranging from uncomplicated febrile illness to severe forms of disease such as cerebral malaria (CM), acute lung injury (ALI), acute respiratory distress syndrome (ARDS), pregnancy-associated malaria (PAM) or severe anemia (SA). Rodent models that mimic human CM, PAM and SA syndromes have been established. Here, we show that DBA/2 mice infected with P. berghei ANKA constitute a new model for malaria-associated ALI. Up to 60% of the mice showed dyspnea, airway obstruction and hypoxemia and died between days 7 and 12 post-infection. The most common pathological findings were pleural effusion, pulmonary hemorrhage and edema, consistent with increased lung vessel permeability, while the blood-brain barrier was intact. Malaria-associated ALI correlated with high levels of circulating VEGF, produced de novo in the spleen, and its blockage led to protection of mice from this syndrome. In addition, either splenectomization or administration of the anti-inflammatory molecule carbon monoxide led to a significant reduction in the levels of sera VEGF and to protection from ALI. The similarities between the physiopathological lesions described here and the ones occurring in humans, as well as the demonstration that VEGF is a critical host factor in the onset of malaria-associated ALI in mice, not only offers important mechanistic insights into the processes underlying the pathology related with malaria but may also pave the way for interventional studies.


Subject(s)
Acute Lung Injury/pathology , Acute Lung Injury/parasitology , Malaria/pathology , Plasmodium berghei , Vascular Endothelial Growth Factor A/metabolism , Acute Lung Injury/drug therapy , Airway Obstruction/drug therapy , Airway Obstruction/parasitology , Airway Obstruction/pathology , Animals , Anti-Inflammatory Agents/pharmacology , Carbon Monoxide/pharmacology , Disease Models, Animal , Dyspnea/drug therapy , Dyspnea/parasitology , Dyspnea/pathology , Host-Parasite Interactions , Hypoxia/drug therapy , Hypoxia/parasitology , Hypoxia/pathology , Lung/blood supply , Lung/parasitology , Lung/pathology , Malaria/drug therapy , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred DBA , Plasmodium chabaudi , Plasmodium yoelii , Pulmonary Circulation
SELECTION OF CITATIONS
SEARCH DETAIL
...