Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Neuropharmacol ; 22(7): 1169-1188, 2024.
Article in English | MEDLINE | ID: mdl-38708921

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that causes the death of motor neurons and consequent muscle paralysis. Despite many efforts to address it, current therapy targeting ALS remains limited, increasing the interest in complementary therapies. Over the years, several herbal preparations and medicinal plants have been studied to prevent and treat this disease, which has received remarkable attention due to their blood-brain barrier penetration properties and low toxicity. Thus, this review presents the therapeutic potential of a variety of medicinal herbs and their relationship with ALS and their physiopathological pathways.


Subject(s)
Amyotrophic Lateral Sclerosis , Biological Products , Amyotrophic Lateral Sclerosis/drug therapy , Humans , Biological Products/therapeutic use , Biological Products/pharmacology , Animals , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/pharmacology , Plants, Medicinal/chemistry
2.
Article in English | MEDLINE | ID: mdl-38018200

ABSTRACT

Neurodegenerative conditions like Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS) encompass disorders characterized by the degeneration of neurons in specific circumstances. The quest for novel agents to influence these diseases, particularly AD, has unearthed various natural compounds displaying multifaceted activities and diverse pharmacological mechanisms. Given the ongoing extensive study of pathways associated with the accumulation of neurofibrillary aggregates and amyloid plaques, this paper aims to comprehensively review around 130 studies exploring natural products. These studies focus on inhibiting the formation of amyloid plaques and tau protein tangles, with the objective of potentially alleviating or delaying AD.

3.
Curr Alzheimer Res ; 20(3): 131-148, 2023.
Article in English | MEDLINE | ID: mdl-37309767

ABSTRACT

The accumulation of amyloid-ß (Aß) is the main event related to Alzheimer's disease (AD) progression. Over the years, several disease-modulating approaches have been reported, but without clinical success. The amyloid cascade hypothesis evolved and proposed essential targets such as tau protein aggregation and modulation of ß-secretase (ß-site amyloid precursor protein cleaving enzyme 1 - BACE-1) and γ-secretase proteases. BACE-1 cuts the amyloid precursor protein (APP) to release the C99 fragment, giving rise to several Aß peptide species during the subsequent γ-secretase cleavage. In this way, BACE-1 has emerged as a clinically validated and attractive target in medicinal chemistry, as it plays a crucial role in the rate of Aß generation. In this review, we report the main results of candidates in clinical trials such as E2609, MK8931, and AZD-3293, in addition to highlighting the pharmacokinetic and pharmacodynamic-related effects of the inhibitors already reported. The current status of developing new peptidomimetic, non-peptidomimetic, naturally occurring, and other class inhibitors are demonstrated, considering their main limitations and lessons learned. The goal is to provide a broad and complete approach to the subject, exploring new chemical classes and perspectives.


Subject(s)
Alzheimer Disease , Amyloid Precursor Protein Secretases , Humans , Amyloid Precursor Protein Secretases/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/metabolism , Aspartic Acid Endopeptidases/metabolism , Amyloid beta-Peptides/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use
4.
Curr Top Med Chem ; 22(24): 1983-2028, 2022.
Article in English | MEDLINE | ID: mdl-35319372

ABSTRACT

The discovery of antibiotics was a revolutionary feat that provided countless health benefits. The identification of penicillin by Alexander Fleming initiated the era of antibiotics, represented by constant discoveries that enabled effective treatments for the different classes of diseases caused by bacteria. However, the indiscriminate use of these drugs allowed the emergence of resistance mechanisms of these microorganisms against the available drugs. In addition, the constant discoveries in the 20th century generated a shortage of new molecules, worrying health agencies and professionals about the appearance of multidrug-resistant strains against available drugs. In this context, the advances of recent years in molecular biology and microbiology have allowed new perspectives in drug design and development, using the findings related to the mechanisms of bacterial resistance to generate new drugs that are not affected by such mechanisms and supply new molecules to be used to treat resistant bacterial infections. Besides, a promising strategy against bacterial resistance is the combination of drugs through adjuvants, providing new expectations in designing new antibiotics and new antimicrobial therapies. Thus, this manuscript will address the main mechanisms of bacterial resistance under the understanding of medicinal chemistry, showing the main active compounds against efflux mechanisms, and also the application of the use of drug delivery systems, and finally, the main potential natural products as adjuvants or with promising activity against resistant strains.


Subject(s)
Bacterial Infections , Chemistry, Pharmaceutical , Humans , Bacteria , Bacterial Infections/drug therapy , Bacterial Infections/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Design , Drug Resistance, Multiple, Bacterial
6.
Curr Top Med Chem ; 20(24): 2168-2185, 2020.
Article in English | MEDLINE | ID: mdl-32621719

ABSTRACT

BACKGROUND: Methicillin-resistant and vancomycin-resistant Staphylococcus aureus are pathogens causing severe infectious diseases that pose real public health threats problems worldwide. In S. aureus, the most efficient multidrug-resistant system is the NorA efflux pump. For this reason, it is critical to identify efflux pump inhibitors. OBJECTIVE: In this paper, we present an update of the new natural and synthetic compounds that act as modulators of antibiotic resistance through the inhibition of the S. aureus NorA efflux pump. RESULTS: Several classes of compounds capable of restoring the antibiotic activity have been identified against resistant-S. aureus strains, acting as NorA efflux pump inhibitors. The most promising classes of compounds were quinolines, indoles, pyridines, phenols, and sulfur-containing heterocycles. However, the substantial degree structural diversity of these compounds makes it difficult to establish good structure- activity correlations that allow the design of compounds with more promising activities and properties. CONCLUSION: Despite substantial efforts put forth in the search for new antibiotic adjuvants that act as efflux pump inhibitors, and despite several promising results, there are currently no efflux pump inhibitors authorized for human or veterinary use, or in clinical trials. Unfortunately, it appears that infection control strategies have remained the same since the discovery of penicillin, and that most efforts remain focused on discovering new classes of antibiotics, rather than trying to prolong the life of available antibiotics, and simultaneously fighting mechanisms of bacterial resistance.


Subject(s)
Anti-Bacterial Agents/chemistry , Bacterial Proteins/antagonists & inhibitors , Multidrug Resistance-Associated Proteins/antagonists & inhibitors , Staphylococcal Infections/drug therapy , Anti-Bacterial Agents/pharmacology , Drug Discovery , Drug Resistance, Bacterial , Humans , Indoles/chemistry , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Phenols/chemistry , Protein Conformation , Pyridines/chemistry , Quinolines/chemistry , Structure-Activity Relationship , Vancomycin-Resistant Staphylococcus aureus/drug effects
7.
Oxid Med Cell Longev ; 2019: 6587150, 2019.
Article in English | MEDLINE | ID: mdl-30881596

ABSTRACT

The term neglected diseases refers to a group of infections caused by various classes of pathogens, including protozoa, viruses, bacteria, and helminths, most often affecting impoverished populations without adequate sanitation living in close contact with infectious vectors and domestic animals. The fact that these diseases were historically not considered priorities for pharmaceutical companies made the available treatments options obsolete, precarious, outdated, and in some cases nonexistent. The use of plants for medicinal, religious, and cosmetic purposes has a history dating back to the emergence of humanity. One of the principal fractions of chemical substances found in plants are essential oils (EOs). EOs consist of a mixture of volatile and hydrophobic secondary metabolites with marked odors, composed primarily of terpenes and phenylpropanoids. They have great commercial value and were widely used in traditional medicine, by phytotherapy practitioners, and in public health services for the treatment of several conditions, including neglected diseases. In addition to the recognized cytoprotective and antioxidative activities of many of these compounds, larvicidal, insecticidal, and antiparasitic activities have been associated with the induction of oxidative stress in parasites, increasing levels of nitric oxide in the infected host, reducing parasite resistance to reactive oxygen species, and increasing lipid peroxidation, ultimately leading to serious damage to cell membranes. The hydrophobicity of these compounds also allows them to cross the membranes of parasites as well as the blood-brain barrier, collaborating in combat at the second stage of several of these infections. Based on these considerations, the aim of this review was to present an update of the potential of EOs, their fractions, and their chemical constituents, against some neglected diseases, including American and African trypanosomiasis, leishmaniasis, and arboviruses, specially dengue.


Subject(s)
Arboviruses/pathogenicity , Neglected Diseases/therapy , Oils, Volatile/therapeutic use , Animals , Oils, Volatile/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...