Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
J Proteomics ; 197: 42-52, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30779967

ABSTRACT

Dual Specificity Phosphatase 12 is a member of the Atypical DUSP Protein Tyrosine Phosphatase family, meaning that it does not contain typical MAP kinase targeting motifs, while being able to dephosphorylate tyrosine and serine/threonine residues. DUSP12 contains, apart from its catalytic domain, a zinc finger domain, making it one of the largest DUSPs, which displays strong nuclear expression in several tissues. In this work we identified nuclear targets of DUSP12 in two different cancer cell lines (A549 and MCF-7), challenging them with genotoxic stimuli to observe the effect on the networks and to link existing information about DUSP12 functions to the data obtained though mass spectrometry. We found network connections to the cytoskeleton (e.g. IQGAP1), to the chromatin (e.g. HP1BP3), to the splicing machinery and to the previously known pathway of ribosome maturation (e.g. TCOF1), which draw insight into many of the functions of this phosphatase, much likely connecting it to distinct, previously unknown genomic stability mechanisms.


Subject(s)
Cell Nucleus/metabolism , DNA Damage , Dual-Specificity Phosphatases/metabolism , Nuclear Proteins/metabolism , Protein Interaction Maps , A549 Cells , Cell Nucleus/pathology , Humans , MCF-7 Cells
2.
Article in English | MEDLINE | ID: mdl-30069819

ABSTRACT

Protein tyrosine kinases (PTK), discovered in the 1970s, have been considered master regulators of biological processes with high clinical significance as targets for human diseases. Their actions are countered by protein tyrosine phosphatases (PTP), enzymes yet underrepresented as drug targets because of the high homology of their catalytic domains and high charge of their catalytic pocket. This scenario is still worse for some PTP subclasses, for example, for the atypical dual-specificity phosphatases (ADUSPs), whose biological functions are not even completely known. In this sense, the present work focuses on the dual-specificity phosphatase 3 (DUSP3), also known as VH1-related phosphatase (VHR), an uncommon regulator of mitogen-activated protein kinase (MAPK) phosphorylation. DUSP3 expression and activities are suggestive of a tumor suppressor or tumor-promoting enzyme in different types of human cancers. Furthermore, DUSP3 has other biological functions involving immune response mediation, thrombosis, hemostasis, angiogenesis, and genomic stability that occur through either MAPK-dependent or MAPK-independent mechanisms. This broad spectrum of actions is likely due to the large substrate diversity and molecular mechanisms that are still under scrutiny. The growing advances in characterizing new DUSP3 substrates will allow the development of pharmacological inhibitors relevant for possible future clinical trials. This review covers all aspects of DUSP3, since its gene cloning and crystallographic structure resolution, in addition to its classical and novel substrates and the biological processes involved, followed by an update of what is currently known about the DUSP3/VHR-inhibiting compounds that might be considered potential drugs to treat human diseases.


Subject(s)
Dual Specificity Phosphatase 3/genetics , Dual Specificity Phosphatase 3/physiology , Dual Specificity Phosphatase 3/antagonists & inhibitors , Humans , Mitogen-Activated Protein Kinases , Neoplasms/enzymology , Neovascularization, Pathologic , Phosphorylation , Protein Tyrosine Phosphatases , Protein-Tyrosine Kinases
3.
Clinics (Sao Paulo) ; 73(suppl 1): e466s, 2018 09 06.
Article in English | MEDLINE | ID: mdl-30208163

ABSTRACT

Protein tyrosine phosphatases have long been considered key regulators of biological processes and are therefore implicated in the origins of various human diseases. Heterozygosity, mutations, deletions, and the complete loss of some of these enzymes have been reported to cause neurodegenerative diseases, autoimmune syndromes, genetic disorders, metabolic diseases, cancers, and many other physiological imbalances. Vaccinia H1-related phosphatase, also known as dual-specificity phosphatase 3, is a protein tyrosine phosphatase enzyme that regulates the phosphorylation of the mitogen-activated protein kinase signaling pathway, a central mediator of a diversity of biological responses. It has been suggested that vaccinia H1-related phosphatase can act as a tumor suppressor or tumor-promoting phosphatase in different cancers. Furthermore, emerging evidence suggests that this enzyme has many other biological functions, such as roles in immune responses, thrombosis, hemostasis, angiogenesis, and genomic stability, and this broad spectrum of vaccinia H1-related phosphatase activity is likely the result of its diversity of substrates. Hence, fully identifying and characterizing these substrate-phosphatase interactions will facilitate the identification of pharmacological inhibitors of vaccinia H1-related phosphatase that can be evaluated in clinical trials. In this review, we describe the biological processes mediated by vaccinia H1-related phosphatase, especially those related to genomic stability. We also focus on validated substrates and signaling circuitry with clinical relevance in human diseases, particularly oncogenesis.


Subject(s)
Dual Specificity Phosphatase 3/physiology , Neoplasms/enzymology , Humans , Mitogen-Activated Protein Kinases/metabolism , Neoplasms/mortality , Signal Transduction , Survival Analysis
4.
Clinics ; 73(supl.1): e466s, 2018. graf
Article in English | LILACS | ID: biblio-952823

ABSTRACT

Protein tyrosine phosphatases have long been considered key regulators of biological processes and are therefore implicated in the origins of various human diseases. Heterozygosity, mutations, deletions, and the complete loss of some of these enzymes have been reported to cause neurodegenerative diseases, autoimmune syndromes, genetic disorders, metabolic diseases, cancers, and many other physiological imbalances. Vaccinia H1-related phosphatase, also known as dual-specificity phosphatase 3, is a protein tyrosine phosphatase enzyme that regulates the phosphorylation of the mitogen-activated protein kinase signaling pathway, a central mediator of a diversity of biological responses. It has been suggested that vaccinia H1-related phosphatase can act as a tumor suppressor or tumor-promoting phosphatase in different cancers. Furthermore, emerging evidence suggests that this enzyme has many other biological functions, such as roles in immune responses, thrombosis, hemostasis, angiogenesis, and genomic stability, and this broad spectrum of vaccinia H1-related phosphatase activity is likely the result of its diversity of substrates. Hence, fully identifying and characterizing these substrate-phosphatase interactions will facilitate the identification of pharmacological inhibitors of vaccinia H1-related phosphatase that can be evaluated in clinical trials. In this review, we describe the biological processes mediated by vaccinia H1-related phosphatase, especially those related to genomic stability. We also focus on validated substrates and signaling circuitry with clinical relevance in human diseases, particularly oncogenesis.


Subject(s)
Humans , Dual Specificity Phosphatase 3/physiology , Neoplasms/enzymology , Signal Transduction , Survival Analysis , Mitogen-Activated Protein Kinases/metabolism , Neoplasms/mortality
SELECTION OF CITATIONS
SEARCH DETAIL
...