Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Genome Ed ; 5: 1241035, 2023.
Article in English | MEDLINE | ID: mdl-38144709

ABSTRACT

The recalcitrance exhibited by many maize (Zea mays) genotypes to traditional genetic transformation protocols poses a significant challenge to the large-scale application of genome editing (GE) in this major crop species. Although a few maize genotypes are widely used for genetic transformation, they prove unsuitable for agronomic tests in field trials or commercial applications. This challenge is exacerbated by the predominance of transformable maize lines adapted to temperate geographies, despite a considerable proportion of maize production occurring in the tropics. Ectopic expression of morphogenic regulators (MRs) stands out as a promising approach to overcome low efficiency and genotype dependency, aiming to achieve 'universal' transformation and GE capabilities in maize. Here, we report the successful GE of agronomically relevant tropical maize lines using a MR-based, Agrobacterium-mediated transformation protocol previously optimized for the B104 temperate inbred line. To this end, we used a CRISPR/Cas9-based construct aiming at the knockout of the VIRESCENT YELLOW-LIKE (VYL) gene, which results in an easily recognizable phenotype. Mutations at VYL were verified in protoplasts prepared from B104 and three tropical lines, regardless of the presence of a single nucleotide polymorphism (SNP) at the seed region of the VYL target site in two of the tropical lines. Three out of five tropical lines were amenable to transformation, with efficiencies reaching up to 6.63%. Remarkably, 97% of the recovered events presented indels at the target site, which were inherited by the next generation. We observed off-target activity of the CRISPR/Cas9-based construct towards the VYL paralog VYL-MODIFIER, which could be partly due to the expression of the WUSCHEL (WUS) MR. Our results demonstrate efficient GE of relevant tropical maize lines, expanding the current availability of GE-amenable genotypes of this major crop.

2.
Curr Microbiol ; 57(2): 127-32, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18461383

ABSTRACT

The major feature of Xylella fastidiosa growing in its hosts, as well as in culture media, is its cellular aggregation and biofilm formation, leading to partial obstruction of the xylem causing water stress in the plant. We report that growth, aggregation, and biofilm formation of X. fastidiosa are influenced by the medium pH. We have verified that X. fastidiosa cell aggregation is reversibly inhibited by decreasing the medium pH from 6.6 to 6.4. Biofilm formation on glass walls was affected as well, and a concomitant decrease in cell multiplication was observed below pH 6.4. The manipulation of culture medium pH can be used as a tool for the cloning of X. fastidiosa strains isolated from plant hosts, because different strains can inhabit the same plant. Also, X. fastidiosa mutants produced by gene manipulation can be isolated from cell aggregates containing transformed and untransformed cells.


Subject(s)
Bacterial Adhesion , Biofilms/growth & development , Xylella/physiology , Colony Count, Microbial , Culture Media/chemistry , Hydrogen-Ion Concentration , Xylella/growth & development
3.
Curr Microbiol ; 49(6): 396-9, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15696614

ABSTRACT

The genome sequence of the pathogen Xylella fastidiosa Citrus Variegated Chlorosis (CVC) strain 9a5c has revealed many genes related to pathogenicity mechanisms and virulence determinants. However, strain 9a5c is resistant to genetic transformation, impairing mutant production for the analysis of pathogenicity mechanisms and virulence determinants of this fastidious phytopathogen. By screening different strains, we found out that cloned strains J1a12, B111, and S11400, all isolated from citrus trees affected by CVC, are amenable to transformation, and J1a12 has been used as a model strain in a functional genomics program supported by FAPESP (São Paulo State Research Foundation). However, we have found that strain J1a12, unlike strains 9a5c and B111, was incapable of inducing CVC symptoms when inoculated in citrus plants. We have now determined that strain B111 is an appropriate candidate for post-genome studies of the CVC strain of X. fastidiosa.


Subject(s)
Citrus sinensis/microbiology , Genome, Bacterial , Mutation , Transformation, Bacterial , Xylella/pathogenicity , Culture Media , Plant Diseases/microbiology , Plant Leaves/microbiology , Polymerase Chain Reaction , Virulence , Xylella/genetics
4.
Microbiology (Reading) ; 148(Pt 11): 3583-3597, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12427949

ABSTRACT

Escherichia coli LexA protein is the repressor of a gene network whose members are directly involved in the repair of damaged DNA and in the survival of bacterial cells until DNA lesions have been eliminated. The lexA gene is widely present in bacteria, although the sequences of only three LexA-binding sites are known: Gram-positive, alpha Proteobacteria and some members of gamma Proteobacteria represented by E. coli. Taking advantage of the fact that the genome sequence of the plant-pathogenic bacterium Xylella fastidiosa has been determined, its lexA gene has been cloned and overexpressed in E. coli to purify its product. After demonstration that X. fastidiosa lexA and recA genes are co-transcribed, gel mobility shift assays and directed mutagenesis experiments using the promoter of the lexA-recA transcriptional unit demonstrated that the X. fastidiosa LexA protein specifically binds the imperfect palindrome TTAGN(6)TACTA. This is the first LexA binding sequence identified in the gamma Proteobacteria differing from the E. coli-like LexA box. Although a computational search has revealed the presence of TTAGN(6)TACTA-like motifs upstream of X. fastidiosa genes other than lexA, X. fastidiosa LexA only binds the promoter of one of them, XF2313, encoding a putative DNA-modification methylase. Moreover, X. fastidiosa LexA protein does not bind any of the other genes whose homologues are regulated by the LexA repressor in E. coli (uvrA, uvrB, ssb, ruvAB, ftsK, dinG, recN and ybfE). RT-PCR quantitative analysis has also demonstrated that lexA-recA and XF2313 genes, as well as the X. fastidiosa genes which are homologues to those of E. coli belonging to the LexA regulon, with the exception of ssb, are DNA damage-inducible in X. fastidiosa.


Subject(s)
Bacterial Proteins/metabolism , DNA Damage/genetics , Gammaproteobacteria/genetics , Serine Endopeptidases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Base Sequence , Binding Sites , DNA, Bacterial/analysis , DNA, Bacterial/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Gammaproteobacteria/metabolism , Molecular Sequence Data , Mutation , Plant Diseases/microbiology , Promoter Regions, Genetic/genetics , Promoter Regions, Genetic/physiology , Rec A Recombinases/metabolism , Serine Endopeptidases/genetics , Serine Endopeptidases/isolation & purification , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...