Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biosensors (Basel) ; 13(3)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36979591

ABSTRACT

A sensitive and selective label-free photoelectrochemical (PEC) immunosensor was designed for the detection of cardiac troponin I (cTnI). The platform was based on a fluorine-doped tin oxide (FTO)-coated glass photoelectrode modified with bismuth vanadate (BiVO4) and sensitized by an electrodeposited bismuth sulfide (Bi2S3) film. The PEC response of the Bi2S3/BiVO4/FTO platform for the ascorbic acid (AA) donor molecule was approximately 1.6-fold higher than the response observed in the absence of Bi2S3. The cTnI antibodies (anti-cTnI) were immobilized on the Bi2S3/BiVO4/FTO platform surface to produce the anti-cTnI/Bi2S3/BiVO4/FTO immunosensor, which was incubated in cTnI solution to inhibit the AA photocurrent. The photocurrent obtained by the proposed immunosensor presented a linear relationship with the logarithm of the cTnI concentration, ranging from 1 pg mL-1 to 1000 ng mL-1. The immunosensor was successfully employed in artificial blood plasma samples for the detection of cTnI, with recovery values ranging from 98.0% to 98.5%.


Subject(s)
Biosensing Techniques , Myocardial Infarction , Humans , Limit of Detection , Electrochemical Techniques , Troponin I , Fluorine , Immunoassay , Electrodes , Myocardial Infarction/diagnosis , Biomarkers
2.
Food Chem ; 227: 16-21, 2017 Jul 15.
Article in English | MEDLINE | ID: mdl-28274417

ABSTRACT

A novel photoelectrochemical sensor was developed for determination of tert-butyl-hydroquinone (TBHQ) in edible vegetable oils, based on CdSe/ZnS core-shell quantum dots sensitized with lithium tetracyanoethylenide (LiTCNE). The CdSe/ZnS/LiTCNE photoelectrochemical sensor presented a TBHQ photocurrent about 13-fold higher and a charge transfer resistance 62-fold lower than observed for a CdSe/ZnS sensor. The photoelectrochemical sensor showed selectivity to TBHQ, with a high photocurrent for this antioxidant compared to the photocurrent responses for other phenolic antioxidants. The CdSe/ZnS/LiTCNE photoelectrochemical sensor presented a linear range from 0.6 to 250µmolL-1, sensitivity of 0.012µALµmol-1, and a limit of detection of 0.21µmolL-1 for TBHQ, under optimized experimental conditions. The sensor was successfully employed in the analysis of edible oil samples, with recoveries of between 98.25% and 99.83% achieved.


Subject(s)
Antioxidants/chemistry , Food Additives/chemistry , Food Analysis/methods , Hydroquinones/chemistry , Plant Oils/chemistry , Food Analysis/instrumentation , Lithium/chemistry , Quantum Dots/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...