Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Food Res Int ; 174(Pt 2): 113494, 2023 12.
Article in English | MEDLINE | ID: mdl-37981355

ABSTRACT

This work aims to analyze the protein profile and volatile compounds of coffees fermented with the indigenous microbiota and with the co-inoculation of three yeasts (Saccharomyces cerevisiae, Torulaspora delbrueckii, and Candida parapsilosis). Two-dimensional gel electrophoresis (2D-PAGE), MALDI-ToF/ToF (MS/MS), and gas chromatography (GC-MS) were performed. A total of 72 "spots" were detected by 2D-PAGE. 16 spots were selected for identification by MALDI-ToF/ToF, and 12 were identified (11S protein, 13S globulin basic chain, 17.6 kDa class II heat shock protein (HSP17.6-CII), 18.0 kDa class I heat shock protein, Seed of Late Development Stage, Pru ar 1, and FAR-1 protein). 81 main volatile compounds were detected and classified into alcohols, acids, aldehydes, esters, hydrocarbons, pyrazines, furans, thiols, and pyridines/pyrrols. The difference between the identified volatile compounds and their concentrations was detected in the treatments with and without inoculation after drying. The compounds formed in green coffee during fermentation can participate in several reactions during roasting, presenting different sensory profiles and contributing to coffee quality.


Subject(s)
Saccharomyces cerevisiae , Yeast, Dried , Coffee , Tandem Mass Spectrometry , Heat-Shock Proteins
2.
Parasitology ; 144(9): 1191-1202, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28487000

ABSTRACT

In South America, visceral leishmaniasis is frequently caused by Leishmania infantum and, at an unknown frequency, by Leishmania amazonensis. Therefore, mixed infections with these organisms are possible. Mixed infections might affect the clinical course, immune response, diagnosis, treatment and epidemiology of the disease. Here we describe the clinical course of mixed infections with L. amazonensis and L. infantum in a hamster model. We show that mixed infections are associated with more severe clinical disease than infection with L. amazonensis or L. infantum alone. In spleens with mixed infections, L. infantum outcompeted L. amazonensis in the tissue, but not in culture from tissue. We found increased levels of IgG in animals infected with L. infantum. Although more than 30 bands were revealed in a Western blot, the highest immunogenicity was observed with proteins having molecular masses of 95 and 90 kDa, whereas proteins with molecular masses of lower than 50 kDa were reactive frequently with serum from hamsters infected with L. amazonensis, and proteins with molecular masses of 80 and 70 kDa were reactive only with serum from hamsters infected with L. infantum. This finding has important implications regarding the biology of Leishmania and humoral immune responses to infections with these organisms.


Subject(s)
Immunity, Humoral , Leishmania infantum/immunology , Leishmania/immunology , Leishmaniasis, Visceral/immunology , Leishmaniasis/immunology , Animals , Blotting, Western , Coinfection , Cricetinae , Disease Models, Animal , Leishmaniasis/parasitology , Mesocricetus , South America , Spleen/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...