Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(21)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37958572

ABSTRACT

Brazil has several important biomes holding impressive fauna and flora biodiversity. Cerrado being one of the richest ones and a significant area in the search for new plant-based products, such as foods, cosmetics, and medicines. The therapeutic potential of Cerrado plants has been described by several studies associating ethnopharmacological knowledge with phytochemical compounds and therapeutic effects. Based on this wide range of options, the Brazilian population has been using these medicinal plants (MP) for centuries for the treatment of various health conditions. Among these, we highlight metabolic diseases, namely obesity and its metabolic alterations from metabolic syndrome to later stages such as type 2 diabetes (T2D). Several studies have shown that adipose tissue (AT) dysfunction leads to proinflammatory cytokine secretion and impaired free fatty acid (FFA) oxidation and oxidative status, creating the basis for insulin resistance and glucose dysmetabolism. In this scenario, the great Brazilian biodiversity and a wide variety of phytochemical compounds make it an important candidate for the identification of pharmacological strategies for the treatment of these conditions. This review aimed to analyze and summarize the current literature on plants from the Brazilian Cerrado that have therapeutic activity against obesity and its metabolic conditions, reducing inflammation and oxidative stress.


Subject(s)
Diabetes Mellitus, Type 2 , Metabolic Diseases , Plants, Medicinal , Brazil , Ecosystem , Obesity/drug therapy , Phytochemicals/therapeutic use
2.
Front Pharmacol ; 14: 1223933, 2023.
Article in English | MEDLINE | ID: mdl-37654604

ABSTRACT

Doxorubicin (Dox) is a chemotherapeutic agent widely used in the clinic, whose side effects include cardiotoxicity, associated with decreased antioxidant defenses and increased oxidative stress. The association of Dox with natural antioxidants can extend its use if not interfering with its pharmacological potential. In this study, we aimed to understand the effects and mechanisms of the aqueous extract of Acrocomia aculeata leaves (EA-Aa) in cancer cells and the co-treatment with Dox, in in vitro and in vivo models. It was found that EA-Aa showed a relevant decrease in the viability of cancer cells (K562 and MCF-7) and increased apoptosis and death. The Dox cytotoxic effect in co-treatment with EA-Aa was increased in cancer cells. The therapeutic association also promoted a change in cell death, leading to a higher rate of apoptosis compared to the Dox group, which induced necrosis. In addition, in non-cancer cells, EA-Aa enhanced red blood cell (RBC) redox state with lower hemolysis and malondialdehyde (MDA) content and had no in vitro nor in vivo toxicity. Furthermore, EA-Aa showed antioxidant protection against Dox-induced cytotoxicity in H9c2 cells (cardiomyoblast), partially mediated by the NRF2 pathway. In vivo, EA-Aa treatment showed a relevant decrease in MDA levels in the heart, kidney, and brain, evaluated in C57Bl/6 mice induced to cardiotoxicity by Dox. Together, our results proved the effectiveness of EA-Aa in potentiating Dox anticancer effects, with antioxidant and cardioprotective activity, suggesting EA-Aa as a potential Dox pharmacological adjuvant.

3.
Nutrients ; 15(16)2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37630771

ABSTRACT

Nutritional disturbances during the early postnatal period can have long-lasting effects on neurodevelopment and may be related to behavioural changes at adulthood. While such neuronal connection disruption can contribute to social and behaviour alterations, the dysregulation of the neuroendocrine pathways involved in nutrient-sensing balance may also cause such impairments, although the underlying mechanisms are still unclear. We aimed to evaluate sex-specific neurodevelopmental and behavioural changes upon postnatal overfeeding and determine the potential underpinning mechanisms at the central nervous system level, with a focus on the interconnection between synaptic and neuroendocrine molecular alterations. At postnatal day 3 (PND3) litters were culled to three animals (small litter procedure). Neurodevelopmental tests were conducted at infancy, whereas behavioural tests to assess locomotion, anxiety, and memory were performed at adolescence, together with molecular analysis of the hippocampus, hypothalamus, and prefrontal cortex. At infancy, females presented impaired acquisition of an auditory response, eye opening, olfactory discrimination, and vestibular system development, suggesting that female offspring neurodevelopment/maturation was deeply affected. Male offspring presented a transitory delay in locomotor performance., while both offspring had lower upper limb strength. At adolescence, both sexes presented anxious-like behaviour without alterations in short-term memory retention. Both males and females presented lower NPY1R levels in a region-specific manner. Furthermore, both sexes presented synaptic changes in the hippocampus (lower GABAA in females and higher GABAA levels in males), while, in the prefrontal cortex, similar higher GABAA receptor levels were observed. At the hypothalamus, females presented synaptic changes, namely higher vGLUT1 and PSD95 levels. Thus, we demonstrate that postnatal overfeeding modulates offspring behaviour and dysregulates nutrient-sensing mechanisms such as NPY and GABA in a sex- and brain-region-specific manner.


Subject(s)
Anxiety , Rodentia , Female , Male , Animals , Anxiety Disorders , Prefrontal Cortex , gamma-Aminobutyric Acid
4.
J Neurochem ; 165(6): 892-906, 2023 06.
Article in English | MEDLINE | ID: mdl-37026518

ABSTRACT

Functional MRI (fMRI) with 1 H-MRS was combined on the hippocampus and visual cortex of animal models of obesity (high-fat diet, HFD) and type 2 diabetes (T2D) to identify the involved mechanisms and temporal evolution of neurometabolic changes in these disorders that could serve as potentially reliable clinical biomarkers. HFD rats presented elevated levels of N-acetylaspartylglutamate (NAAG) (p = 0.0365 vs. standard diet, SD) and glutathione (GSH) (p = 0.0494 vs. SD) in the hippocampus. NAAG and GSH levels in this structure proved to be correlated (r = 0.4652, p = 0.0336). This mechanism was not observed in diabetic rats. Combining MRS and fMRI-evaluated blood-oxygen-level-dependent (BOLD) response, elevated taurine (p = 0.0326 vs. HFD) and GABA type A receptor (GABAA R) (p = 0.0211 vs. SD and p = 0.0153 vs. HFD) were observed in the visual cortex of only diabetic rats, counteracting the elevated BOLD response and suggesting an adaptative mechanism against hyperexcitability observed in the primary visual cortex (V1) (p = 0.0226 vs. SD). BOLD amplitude was correlated with the glutamate levels (r = 0.4491; p = 0.0316). Therefore, here we found evidence for several biological dichotomies regarding excitotoxicity and neuroprotection in different brain regions, identifying putative markers of their different susceptibility and response to the metabolic and vascular insults of obesity and diabetes.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Neurochemistry , Visual Cortex , Rats , Animals , Neuroprotection , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Experimental/metabolism , Hippocampus/diagnostic imaging , Hippocampus/metabolism , Visual Cortex/diagnostic imaging , Visual Cortex/metabolism , Glutamic Acid/metabolism , Models, Animal , Obesity/diagnostic imaging , Obesity/metabolism , gamma-Aminobutyric Acid/metabolism
5.
Nutrients ; 15(5)2023 Mar 04.
Article in English | MEDLINE | ID: mdl-36904281

ABSTRACT

Obesogenic environments such as Westernized diets, overnutrition, and exposure to glycation during gestation and lactation can alter peripheral neuroendocrine factors in offspring, predisposing for metabolic diseases in adulthood. Thus, we hypothesized that exposure to obesogenic environments during the perinatal period reprograms offspring energy balance mechanisms. Four rat obesogenic models were studied: maternal diet-induced obesity (DIO); early-life obesity induced by postnatal overfeeding; maternal glycation; and postnatal overfeeding combined with maternal glycation. Metabolic parameters, energy expenditure, and storage pathways in visceral adipose tissue (VAT) and the liver were analyzed. Maternal DIO increased VAT lipogenic [NPY receptor-1 (NPY1R), NPY receptor-2 (NPY2R), and ghrelin receptor], but also lipolytic/catabolic mechanisms [dopamine-1 receptor (D1R) and p-AMP-activated protein kinase (AMPK)] in male offspring, while reducing NPY1R in females. Postnatally overfed male animals only exhibited higher NPY2R levels in VAT, while females also presented NPY1R and NPY2R downregulation. Maternal glycation reduces VAT expandability by decreasing NPY2R in overfed animals. Regarding the liver, D1R was decreased in all obesogenic models, while overfeeding induced fat accumulation in both sexes and glycation the inflammatory infiltration. The VAT response to maternal DIO and overfeeding showed a sexual dysmorphism, and exposure to glycotoxins led to a thin-outside-fat-inside phenotype in overfeeding conditions and impaired energy balance, increasing the metabolic risk in adulthood.


Subject(s)
Maternal Nutritional Physiological Phenomena , Obesity, Maternal , Prenatal Exposure Delayed Effects , Animals , Female , Male , Pregnancy , Rats , Adipose Tissue/metabolism , Diet, High-Fat , Energy Metabolism , Liver/metabolism , Obesity/metabolism , Obesity, Maternal/metabolism , Prenatal Exposure Delayed Effects/metabolism
6.
Int J Mol Sci ; 23(10)2022 May 18.
Article in English | MEDLINE | ID: mdl-35628465

ABSTRACT

Curcumin has been suggested as a promising treatment for metabolic diseases, but the high doses required limit its therapeutic use. In this study, a new curcuminoid is synthesised to increase curcumin anti-inflammatory and antioxidant potential and to achieve hypoglycaemic and protective vascular effects in type 2 diabetic rats in a lower dose. In vitro, the anti-inflammatory effect was determined through the Griess reaction, and the antioxidant activity through ABTS and TBARS assays. In vivo, Goto-Kakizaki rats were treated for 2 weeks with the equimolar dose of curcumin (40 mg/kg/day) or curcuminoid (52.4 mg/kg/day). Fasting glycaemia, insulin tolerance, plasma insulin, insulin signalling, serum FFA, endothelial function and several markers of oxidative stress were evaluated. Both compounds presented a significant anti-inflammatory effect. Moreover, the curcuminoid had a marked hypoglycaemic effect, accompanied by higher GLUT4 levels in adipose tissue. Both compounds increased NO-dependent vasorelaxation, but only the curcuminoid exacerbated the response to ascorbic acid, consistent with a higher decrease in vascular oxidative and nitrosative stress. SOD1 and GLO1 levels were increased in EAT and heart, respectively. Altogether, these data suggest that the curcuminoid developed here has more pronounced effects than curcumin in low doses, improving the oxidative stress, endothelial function and glycaemic profile in type 2 diabetes.


Subject(s)
Curcumin , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use , Blood Glucose/metabolism , Curcumin/pharmacology , Curcumin/therapeutic use , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/complications , Diarylheptanoids/therapeutic use , Disease Models, Animal , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Insulin/therapeutic use , Rats
7.
Oxid Med Cell Longev ; 2022: 3046483, 2022.
Article in English | MEDLINE | ID: mdl-35401919

ABSTRACT

Oxidative stress plays a key role in the initiation and progression of metabolic diseases, including obesity. Preventing the accumulation of reactive oxygen species and oxidative damage to macromolecules is a beneficial strategy for reducing comorbidities associated with obesity. Fruits from the Spondias genus are known for their antioxidant activity, but they are not available year-round due to their seasonality. In this context, we investigated the antioxidant activity and identified the chemical constituents of the aqueous extract of the stem bark of Spondias purpurea L. (EBSp). Additionally, we evaluated the effect of EBSp consumption on metabolic parameters in mice with obesity induced by a high-fat diet. Chemical analyses revealed 19 annotated compounds from EBSp, including flavan-3-ols, proanthocyanidins, methoxylated coumarin, and gallic and ellagic acids, besides other phenolic compounds. In vitro, EBSp showed antioxidant activity through the scavenging of the free radicals and the protection of macromolecules against oxidative damage. Cellular assays revealed that EBSp reduced the levels of malondialdehyde produced by erythrocytes exposed to the oxidizing agent AAPH. Flow cytometry studies showed that EBSp reduced reactive oxygen species levels in human peripheral blood mononuclear cells treated with hydrogen peroxide. Obese mice treated with EBSp (400 mg.kg-1) for 60 days showed reduced levels of malondialdehyde in the heart, liver, kidneys, and nervous system. The total cholesterol levels in mice treated with EBSp reached levels similar to those after treatment with the drug simvastatin. Together, the results show that the combination of the different phenolic compounds in S. purpurea L. bark promotes antioxidant effects in vitro and in vivo, resulting in cytoprotection in the context of oxidative stress associated with obesity and a reduction in hypercholesterolemia. From a clinical perspective, the reduction in oxidative stress in obese individuals contributes to the reduction in the emergence of comorbidities associated with this metabolic syndrome.


Subject(s)
Anacardiaceae , Hypercholesterolemia , Anacardiaceae/chemistry , Animals , Antioxidants/metabolism , Diet, High-Fat/adverse effects , Hypercholesterolemia/drug therapy , Leukocytes, Mononuclear/metabolism , Malondialdehyde/metabolism , Mice , Obesity/drug therapy , Oxidative Stress , Phenols/pharmacology , Plant Bark/chemistry , Plant Extracts/analysis , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Reactive Oxygen Species/metabolism
8.
Nutrients ; 13(9)2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34578832

ABSTRACT

Although fruit juices are a natural source of sugars, there is a controversy whether their sugar content has similar harmful effects as beverages' added-sugars. We aimed to study the role of fruit juice sugars in inducing overweight, hyperglycaemia, glycation and oxidative stress in normal and diabetic animal models. In diabetic Goto-Kakizaki (GK) rats, we compared the effects of four different fruit juices (4-weeks) with sugary solutions having a similar sugar profile and concentration. In vitro, the sugary solutions were more susceptible to AGE formation than fruit juices, also causing higher postprandial glycaemia and lower erythrocytes' antioxidant capacity in vivo (single intake). In GK rats, ad libitum fruit juice consumption (4-weeks) did not change body weight, glycaemia, oxidative stress nor glycation. Consumption of a matched volume of sugary solutions aggravated fasting glycaemia but had a moderate impact on caloric intake and oxidative stress/glycation markers in tissues of diabetic rats. Ad libitum availability of the same sugary solutions impaired energy balance regulation, leading to higher caloric intake than ad libitum fruit juices and controls, as well as weight gain, fasting hyperglycaemia, insulin intolerance and impaired oxidative stress/glycation markers in several tissues. We demonstrated the distinct role of sugars naturally present in fruit juices and added sugars in energy balance regulation, impairing oxidative stress, glycation and glucose metabolism in an animal model of type 2 diabetes.


Subject(s)
Body Weight , Diabetes Mellitus, Experimental/metabolism , Dietary Sugars/administration & dosage , Energy Intake , Fruit and Vegetable Juices , Oxidative Stress , Animals , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 2/metabolism , Dietary Sucrose/administration & dosage , Dietary Sugars/adverse effects , Fasting , Glucose/metabolism , Hyperglycemia/metabolism , Insulin/metabolism , Male , Rats , Rats, Wistar
9.
Nutrients ; 13(8)2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34445015

ABSTRACT

Oxidative stress is involved in the metabolic dysregulation of type 2 diabetes (DM2). Acrocomia aculeata (Aa) fruit pulp has been described for the treatment of several diseases, and recently we have proved that its leaves have phenolic compounds with a marked antioxidant effect. We aimed to assess whether they can improve metabolic, redox and vascular functions in DM2. Control Wistar (W-Ctrl) and non-obese type 2 diabetic Goto-Kakizaki (GK-Ctrl) rats were treated for 30 days with 200 mg.kg-1 aqueous extract of Aa (EA-Aa) (Wistar, W-EA-Aa/GK, GK-EA-Aa). EA-Aa was able to reduce fasting glycaemia and triglycerides of GK-EA-Aa by improving proteins related to glucose and lipid metabolism, such as GLUT-4, PPARγ, AMPK, and IR, when compared to GK-Ctrl. It also improved viability of 3T3-L1 pre-adipocytes exposed by H2O2. EA-Aa also increased the levels of catalase in the aorta and kidney, reduced oxidative stress and increased relaxation of the aorta in GK-treated rats in relation to GK-Ctrl, in addition to the protective effect against oxidative stress in HMVec-D cells. We proved the direct antioxidant potential of the chemical compounds of EA-Aa, the increase in antioxidant defences in a tissue-specific manner and hypoglycaemic properties, improving vascular function in type 2 diabetes. EA-Aa and its constituents may have a therapeutic potential for the treatment of DM2 complications.


Subject(s)
Antioxidants/pharmacology , Aorta/drug effects , Arecaceae , Blood Glucose/drug effects , Diabetes Mellitus, Type 2/drug therapy , Diabetic Angiopathies/drug therapy , Hypoglycemic Agents/pharmacology , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Vasodilation/drug effects , 3T3-L1 Cells , Adipocytes/drug effects , Adipocytes/metabolism , Animals , Antioxidants/isolation & purification , Aorta/metabolism , Aorta/physiopathology , Arecaceae/chemistry , Biomarkers/blood , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/complications , Diabetic Angiopathies/etiology , Diabetic Angiopathies/metabolism , Diabetic Angiopathies/physiopathology , Disease Models, Animal , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Fruit , Humans , Hypoglycemic Agents/isolation & purification , Lipids/blood , Male , Mice , Plant Extracts/isolation & purification , Rats, Wistar
10.
Arch Pharm Res ; 43(6): 567-581, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32557163

ABSTRACT

Type 2 diabetes Mellitus (T2DM) is characterized by chronically increased blood glucose levels, which is associated with impairment of the inflammatory and oxidative state and dyslipidaemia. Although it is considered a world heath concern and one of the most studied diseases, we are still pursuing an effective therapy for both the pathophysiological mechanisms and the complications. Curcumin, a natural compound found in the rhizome of Curcuma longa, is well known for its numerous biological activities, as demonstrated by several studies supporting that curcumin possesses hypoglycaemic, hypolipidemic, anti-inflammatory and antioxidant properties, among others. These effects have been explored to the attenuation of hyperglycaemia and progression of DM complications, being appointed as a potential therapeutic approach. Besides its strong intrinsic activity, the polyphenol has low bioavailability, compromising its therapeutic efficacy. In order to overcome this limitation, several chemical strategies have been applied to curcumin, such as drug delivery systems, chemical manipulation and the use of adjuvant therapies. Given the promising results obtained with curcumin derivative, in this review we discuss not only the therapeutic targets of curcumin, but also its most recently developed analogues and their efficacy in the management of T2DM pathophysiology and complications.


Subject(s)
Curcumin/therapeutic use , Diabetes Complications/prevention & control , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/therapeutic use , Animals , Curcumin/analogs & derivatives , Curcumin/chemistry , Humans , Hypoglycemic Agents/chemistry
11.
Oxid Med Cell Longev ; 2020: 5238650, 2020.
Article in English | MEDLINE | ID: mdl-32256951

ABSTRACT

Oxidative stress is a metabolic disorder linked with several chronic diseases, and this condition can be improved by natural antioxidants. The fruit pulp of the palm Acrocomia aculeata (Jacq.) Lodd. ex Mart. is widely used in the treatment of various illnesses, but as far as we know, there are no reports regarding the properties of its leaves. Thus, we aimed to evaluate the antioxidant activity of A. aculeata leaf extracts obtained with water (EA-Aa), ethanol (EE-Aa), and methanol (EM-Aa) solvents. The extracts were chemically characterized, and their antioxidant activity was assessed through the scavenging of the free radicals DPPH and ABTS. EE-Aa and EM-Aa showed the highest amounts of phenolic compounds and free radical scavenging activity. However, EA-Aa was more efficient to protect human erythrocytes against AAPH-induced hemolysis and lipid peroxidation. Thus, we further show the antioxidant effect of EA-Aa in preventing AAPH-induced protein oxidation, H2O2-induced DNA fragmentation, and ROS generation in Cos-7 cells. Increased levels of Sirt1, catalase, and activation of ERK and Nrf2 were observed in Cos-7 treated with EA-Aa. We also verify increased survival in nematodes C. elegans, when induced to the oxidative condition by Juglone. Therefore, our results showed a typical chemical composition of plants for all extracts, but the diversity of compounds presented in EA-Aa is involved in the lower toxicity and antioxidant properties provided to the macromolecules tested, proteins, DNA, and lipids. This protective effect also proven in Cos-7 and in C. elegans was probably due to the activation of the Sirt1/Nrf2 pathway. Altogether, the low toxicity and the antioxidant properties of EA-Aa showed in all the experimental models support its further use in the treatment of oxidative stress-related diseases.


Subject(s)
Fruit/chemistry , Plant Leaves/chemistry , Sirtuin 1/chemistry , Humans , Oxidative Stress
SELECTION OF CITATIONS
SEARCH DETAIL
...