Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Sport Health Sci ; 12(3): 369-378, 2023 05.
Article in English | MEDLINE | ID: mdl-34461327

ABSTRACT

BACKGROUND: Recognizing sport-related concussion (SRC) is challenging and relies heavily on subjective symptom reports. An objective, biological marker could improve recognition and understanding of SRC. There is emerging evidence that salivary micro-ribonucleic acids (miRNAs) may serve as biomarkers of concussion; however, it remains unclear whether concussion-related miRNAs are impacted by exercise. We sought to determine whether 40 miRNAs previously implicated in concussion pathophysiology were affected by participation in a variety of contact and non-contact sports. Our goal was to refine a miRNA-based tool capable of identifying athletes with SRC without the confounding effects of exercise. METHODS: This case-control study harmonized data from concussed and non-concussed athletes recruited across 10 sites. Levels of salivary miRNAs within 455 samples from 314 individuals were measured with RNA sequencing. Within-subjects testing was used to identify and exclude miRNAs that changed with either (a) a single episode of exercise (166 samples from 83 individuals) or (b) season-long participation in contact sports (212 samples from 106 individuals). The miRNAs that were not impacted by exercise were interrogated for SRC diagnostic utility using logistic regression (172 samples from 75 concussed and 97 non-concussed individuals). RESULTS: Two miRNAs (miR-532-5p and miR-182-5p) decreased (adjusted p < 0.05) after a single episode of exercise, and 1 miRNA (miR-4510) increased only after contact sports participation. Twenty-three miRNAs changed at the end of a contact sports season. Two of these miRNAs (miR-26b-3p and miR-29c-3p) were associated (R > 0.50; adjusted p < 0.05) with the number of head impacts sustained in a single football practice. Among the 15 miRNAs not confounded by exercise or season-long contact sports participation, 11 demonstrated a significant difference (adjusted p < 0.05) between concussed and non-concussed participants, and 6 displayed moderate ability (area under curve > 0.70) to identify concussion. A single ratio (miR-27a-5p/miR-30a-3p) displayed the highest accuracy (AUC = 0.810, sensitivity = 82.4%, specificity = 73.3%) for differentiating concussed and non-concussed participants. Accuracy did not differ between participants with SRC and non-SRC (z = 0.5, p = 0.60). CONCLUSION: Salivary miRNA levels may accurately identify SRC when not confounded by exercise. Refinement of this approach in a large cohort of athletes could eventually lead to a non-invasive, sideline adjunct for SRC assessment.


Subject(s)
Brain Concussion , Football , MicroRNAs , Humans , Saliva , Case-Control Studies , Brain Concussion/diagnosis , Biomarkers
2.
J Neurotrauma ; 39(13-14): 923-934, 2022 07.
Article in English | MEDLINE | ID: mdl-35412857

ABSTRACT

Concussion is a heterogeneous injury that relies predominantly on subjective symptom reports for patient assessment and treatment. Developing an objective, biological test could aid phenotypic categorization of concussion patients, leading to advances in personalized treatment. This prospective multi-center study employed saliva micro-ribonucleic acid (miRNA) levels to stratify 251 individuals with concussion into biological subgroups. Using miRNA biological clusters, our objective was to assess for differences in medical/demographic characteristics, symptoms, and functional measures of balance and cognition. The miRNAs that best defined each cluster were used to identify physiological pathways that characterized each cluster. The 251 participants (mean age: 18 ± 7 years; 57% male) were optimally grouped into 10 clusters based on 22 miRNA levels. The clusters differed in age (χ2 = 19.1, p = 0.024), days post-injury at the time of saliva collection (χ2 = 22.6; p = 0.007), and number of prior concussions (χ2 = 17.6, p = 0.040). The clusters also differed in symptom reports for fatigue (χ2 = 17.7; p = 0.039), confusion (χ2 = 22.3; p = 0.008), difficulty remembering (χ2 = 22.0; p = 0.009), and trouble falling asleep (χ2 = 17.2; p = 0.046), but not objective balance or cognitive performance (p > 0.05). The miRNAs that defined concussion clusters regulate 16 physiological pathways, including adrenergic signaling, estrogen signaling, fatty acid metabolism, GABAergic signaling, synaptic vesicle cycling, and transforming growth factor (TGF)-ß signaling. These results show that saliva miRNA levels may stratify individuals with concussion based on underlying biological perturbations that are relevant to both symptomology and pharmacological targets. If validated in a larger cohort, miRNA assessment could aid individualized, biology-driven concussion treatment.


Subject(s)
Brain Concussion , MicroRNAs , Brain Concussion/psychology , Female , Humans , Male , Phenotype , Prospective Studies , Saliva
3.
J Neurol ; 268(11): 4349-4361, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34028616

ABSTRACT

OBJECTIVE: The goals of this study were to assess the ability of salivary non-coding RNA (ncRNA) levels to predict post-concussion symptoms lasting ≥ 21 days, and to examine the ability of ncRNAs to identify recovery compared to cognition and balance. METHODS: RNA sequencing was performed on 505 saliva samples obtained longitudinally from 112 individuals (8-24-years-old) with mild traumatic brain injury (mTBI). Initial samples were obtained ≤ 14 days post-injury, and follow-up samples were obtained ≥ 21 days post-injury. Computerized balance and cognitive test performance were assessed at initial and follow-up time-points. Machine learning was used to define: (1) a model employing initial ncRNA levels to predict persistent post-concussion symptoms (PPCS) ≥ 21 days post-injury; and (2) a model employing follow-up ncRNA levels to identify symptom recovery. Performance of the models was compared against a validated clinical prediction rule, and balance/cognitive test performance, respectively. RESULTS: An algorithm using age and 16 ncRNAs predicted PPCS with greater accuracy than the validated clinical tool and demonstrated additive combined utility (area under the curve (AUC) 0.86; 95% CI 0.84-0.88). Initial balance and cognitive test performance did not differ between PPCS and non-PPCS groups (p > 0.05). Follow-up balance and cognitive test performance identified symptom recovery with similar accuracy to a model using 11 ncRNAs and age. A combined model (ncRNAs, balance, cognition) most accurately identified recovery (AUC 0.86; 95% CI 0.83-0.89). CONCLUSIONS: ncRNA biomarkers show promise for tracking recovery from mTBI, and for predicting who will have prolonged symptoms. They could provide accurate expectations for recovery, stratify need for intervention, and guide safe return-to-activities.


Subject(s)
Brain Concussion , Adolescent , Adult , Biomarkers , Brain Concussion/diagnosis , Child , Humans , Neuropsychological Tests , RNA , Saliva , Young Adult
4.
Clin Transl Med ; 10(6): e197, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33135344

ABSTRACT

BACKGROUND: Early, accurate diagnosis of mild traumatic brain injury (mTBI) can improve clinical outcomes for patients, but mTBI remains difficult to diagnose because of reliance on subjective symptom reports. An objective biomarker could increase diagnostic accuracy and improve clinical outcomes. The aim of this study was to assess the ability of salivary noncoding RNA (ncRNA) to serve as a diagnostic adjunct to current clinical tools. We hypothesized that saliva ncRNA levels would demonstrate comparable accuracy for identifying mTBI as measures of symptom burden, neurocognition, and balance. METHODS: This case-control study involved 538 individuals. Participants included 251 individuals with mTBI, enrolled ≤14 days postinjury, from 11 clinical sites. Saliva samples (n = 679) were collected at five time points (≤3, 4-7, 8-14, 15-30, and 31-60 days post-mTBI). Levels of ncRNAs (microRNAs, small nucleolar RNAs, and piwi-interacting RNAs) were quantified within each sample using RNA sequencing. The first sample from each mTBI participant was compared to saliva samples from 287 controls. Samples were divided into testing (n = 430; mTBI = 201 and control = 239) and training sets (n = 108; mTBI = 50 and control = 58). The test set was used to identify ncRNA diagnostic candidates and create a diagnostic model. Model accuracy was assessed in the naïve test set. RESULTS: A model utilizing seven ncRNA ratios, along with participant age and chronic headache status, differentiated mTBI and control participants with a cross-validated area under the curve (AUC) of .857 in the training set (95% CI, .816-.903) and .823 in the naïve test set. In a subset of participants (n = 321; mTBI = 176 and control = 145) assessed for symptom burden (Post-Concussion Symptom Scale), as well as neurocognition and balance (ClearEdge System), these clinical measures yielded cross-validated AUC of .835 (95% CI, .782-.880) and .853 (95% CI, .803-.899), respectively. A model employing symptom burden and four neurocognitive measures identified mTBI participants with similar AUC (.888; CI, .845-.925) as symptom burden and four ncRNAs (.932; 95% CI, .890-.965). CONCLUSION: Salivary ncRNA levels represent a noninvasive, biologic measure that can aid objective, accurate diagnosis of mTBI.

5.
Int J Mol Sci ; 21(20)2020 Oct 20.
Article in English | MEDLINE | ID: mdl-33092191

ABSTRACT

Recurrent concussions increase risk for persistent post-concussion symptoms, and may lead to chronic neurocognitive deficits. Little is known about the molecular pathways that contribute to persistent concussion symptoms. We hypothesized that salivary measurement of microribonucleic acids (miRNAs), a class of epitranscriptional molecules implicated in concussion pathophysiology, would provide insights about the molecular cascade resulting from recurrent concussions. This hypothesis was tested in a case-control study involving 13 former professional football athletes with a history of recurrent concussion, and 18 age/sex-matched peers. Molecules of interest were further validated in a cross-sectional study of 310 younger individuals with a history of no concussion (n = 230), a single concussion (n = 56), or recurrent concussions (n = 24). There was no difference in neurocognitive performance between the former professional athletes and their peers, or among younger individuals with varying concussion exposures. However, younger individuals without prior concussion outperformed peers with prior concussion on three balance assessments. Twenty salivary miRNAs differed (adj. p < 0.05) between former professional athletes and their peers. Two of these (miR-28-3p and miR-339-3p) demonstrated relationships (p < 0.05) with the number of prior concussions reported by younger individuals. miR-28-3p and miR-339-5p may play a role in the pathophysiologic mechanism involved in cumulative concussion effects.


Subject(s)
Biomarkers/metabolism , Brain Concussion/genetics , MicroRNAs/genetics , Saliva/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Athletes/statistics & numerical data , Case-Control Studies , Child , Cross-Sectional Studies , Football , Humans , Male , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...