Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Water Environ Res ; 77(2): 128-37, 2005.
Article in English | MEDLINE | ID: mdl-15816676

ABSTRACT

Models that predict volatilization of organic compounds from wastewater treatment basins may underestimate emission rates if the surfaces are considered as quiescent. In reality, the water surface may be agitated by subsurface aeration, increasing mass transfer across the tank surface air-water interface. This study investigated the effect of turbulence, induced by diffused bubble aeration, on mass transfer at the water surface of a pilot aeration basin. The mass transfer of ammonia from an enclosed headspace over the basin to acidified water was measured when different diffuser types and airflow rates were applied. Oxygen-transfer tests were conducted immediately following each ammonia-transfer test. Increasing airflow rates through fine- and coarse-bubble diffusers had a significant effect on the ammonia mass-transfer rate. Experimental mass-transfer parameters (K(L)a's) for surface volatilization derived with aeration present were up to 48% higher than the K(L)a values for quiescent conditions over the range of conditions tested. No effect of diffuser type on ammonia transfer could be determined. The study results infer an effect on oxygen transfer into the water at the surface and potential transfer of volatile organic compounds, if present, from the water. The results of the ammonia mass-transfer experiments suggest that adjustments to the existing mass transfer correlations for surface volatilization from aeration basins may be in order. Such adjustments will have the greatest effect on predictions for the less volatile compounds, under conditions of low airflow rates.


Subject(s)
Ammonia/chemistry , Waste Disposal, Fluid/methods , Air Movements , Diffusion , Gases/chemistry , Models, Theoretical , Organic Chemicals/chemistry , Oxygen/chemistry , Sewage/chemistry , Volatilization , Water/chemistry
2.
J Hyg (Lond) ; 97(1): 175-84, 1986 Aug.
Article in English | MEDLINE | ID: mdl-3016083

ABSTRACT

A bovine enterovirus and a bovine parvovirus seeded into liquid cattle manure were rapidly inactivated by anaerobic digestion under thermophilic conditions (55 degrees C), but the same viruses survived for up to 13 and 8 days respectively under mesophilic conditions (35 degrees C). The enterovirus was inactivated in digested liquid manure heated to 70 degrees C for 30 min, but the parvovirus was not inactivated by this treatment. The enterovirus, seeded into single cell protein (the solids recovered by centrifugation of digested liquid manure), was inactivated by a gamma irradiation dose of 1.0 Mrad, but the parvovirus survived this dose. When single cell protein seeded with bovine enterovirus or bovine parvovirus was ensiled with cracked corn, the enterovirus was inactivated after a period of 30 days, while the parvovirus survived for 30 days in one of two experiments. Neither the enterovirus nor the parvovirus survived composting for 28 days in a thermophilic aerobic environment when seeded into the solid fraction of cattle manure. It was concluded that, of the procedures tested, only anaerobic digestion under thermophilic conditions appeared to be reliable method of viral inactivation to ensure the safety of single cell protein for refeeding to livestock. Composting appeared to be a suitable method for the disinfection of manure for use as a soil conditioner.


Subject(s)
Enterovirus/physiology , Manure , Parvoviridae/physiology , Anaerobiosis , Animals , Cattle/microbiology , Enterovirus/radiation effects , Gamma Rays , Hot Temperature , Hydrogen-Ion Concentration , Parvoviridae/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...