Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Nat Biomed Eng ; 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38062131

ABSTRACT

Pluripotent stem cells (PSCs) are a promising source of allogeneic T cells for off-the-shelf immunotherapies. However, the process of differentiating genetically engineered PSCs to generate mature T cells requires that the same molecular elements that are crucial for the selection of these cells be removed to prevent alloreactivity. Here we show that antigen-restricted mature T cells can be generated in vitro from PSCs edited via CRISPR to lack endogenous T cell receptors (TCRs) and class I major histocompatibility complexes. Specifically, we used T cell precursors from RAG1-/-RAG2-/-B2M-/- human PSCs expressing a single TCR, and a murine stromal cell line providing the cognate human major histocompatibility complex molecule and other critical signals for T cell maturation. Possibly owing to the absence of TCR mispairing, the generated T cells showed substantially better tumour control in mice than T cells with an intact endogenous TCR. Introducing the T cell selection components into the stromal microenvironment of the PSCs overcomes inherent biological challenges associated with the development of T cell immunotherapies from allogeneic PSCs.

2.
Cell Rep ; 42(3): 112241, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36906850

ABSTRACT

Generation of chimeric antigen receptor (CAR) T cells from pluripotent stem cells (PSCs) will enable advances in cancer immunotherapy. Understanding how CARs affect T cell differentiation from PSCs is important for this effort. The recently described artificial thymic organoid (ATO) system supports in vitro differentiation of PSCs to T cells. Unexpectedly, PSCs transduced with a CD19-targeted CAR resulted in diversion of T cell differentiation to the innate lymphoid cell 2 (ILC2) lineage in ATOs. T cells and ILC2s are closely related lymphoid lineages with shared developmental and transcriptional programs. Mechanistically, we show that antigen-independent CAR signaling during lymphoid development enriched for ILC2-primed precursors at the expense of T cell precursors. We applied this understanding to modulate CAR signaling strength through expression level, structure, and presentation of cognate antigen to demonstrate that the T cell-versus-ILC lineage decision can be rationally controlled in either direction, providing a framework for achieving CAR-T cell development from PSCs.


Subject(s)
Pluripotent Stem Cells , T-Lymphocytes , Immunity, Innate , Lymphocytes/metabolism , Pluripotent Stem Cells/metabolism , Cell Differentiation , Immunotherapy, Adoptive/methods , Antigens, CD19 , Receptors, Antigen, T-Cell/metabolism
4.
Curr Protoc ; 2(4): e403, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35384408

ABSTRACT

The generation of T cells is a complex, carefully orchestrated process that occurs in the thymus. The ability to mimic T cell differentiation in vitro has opened up avenues to better understand different stages of thymopoiesis but has also enabled the in vitro production of mature T cells suitable for immunotherapy. Among existing protocols, the artificial thymic organoid (ATO) system has been shown to be the most efficient at producing mature conventional T cells. In this serum-free model, human or murine hematopoietic stem and progenitor cells (HSPCs) are combined with a murine stromal cell line expressing a Notch ligand in a 3D cell aggregate. In ATOs, although only simple medium changes are required throughout the cultures, HSPCs differentiate into T cells with kinetics and phenotypes similar to those of endogenous thymopoiesis. This article describes protocols for the generation of ATOs from human and murine HSPCs. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Expansion and preparation of MS5-hDLL4 or MS5-mDLL4 cells Basic Protocol 2: Isolation of human hematopoietic stem and progenitor cells (HSPCs; CD34+ cells) Support Protocol 1: Transduction of human HSPCs (CD34+ cells) Basic Protocol 3: Production of thymic progenitors and mature T cells from human HSPCs in artificial thymic organoids (ATOs) Support Protocol 2: Phenotype analysis of human ATO cells by flow cytometry Basic Protocol 4: Isolation of murine HSPCs (Lin- Sca1+ cKit+; LSK) and hematopoietic stem cells (LSK CD150+ CD48-) Basic Protocol 5: Production of thymic progenitors and mature T cells from murine HSPCs in ATOs Support Protocol 3: Phenotype analysis of murine ATO cells by flow cytometry Alternate Protocol: Generation of ATOs from single HSPCs.


Subject(s)
Hematopoietic Stem Cells , Organoids , Animals , Cell Differentiation , Hematopoiesis , Humans , Mice , T-Lymphocytes
5.
Cell Stem Cell ; 29(4): 515-527.e8, 2022 04 07.
Article in English | MEDLINE | ID: mdl-35278370

ABSTRACT

Unlimited generation of chimeric antigen receptor (CAR) T cells from human-induced pluripotent stem cells (iPSCs) is an attractive approach for "off-the-shelf" CAR T cell immunotherapy. Approaches to efficiently differentiate iPSCs into canonical αß T cell lineages, while maintaining CAR expression and functionality, however, have been challenging. We report that iPSCs reprogramed from CD62L+ naive and memory T cells followed by CD19-CAR engineering and 3D-organoid system differentiation confers products with conventional CD8αß-positive CAR T cell characteristics. Expanded iPSC CD19-CAR T cells showed comparable antigen-specific activation, degranulation, cytotoxicity, and cytokine secretion compared with conventional CD19-CAR T cells and maintained homogeneous expression of the TCR derived from the initial clone. iPSC CD19-CAR T cells also mediated potent antitumor activity in vivo, prolonging survival of mice with CD19+ human tumor xenografts. Our study establishes feasible methodologies to generate highly functional CAR T cells from iPSCs to support the development of "off-the-shelf" manufacturing strategies.


Subject(s)
Induced Pluripotent Stem Cells , Receptors, Chimeric Antigen , Animals , Cell Differentiation , Humans , Immunotherapy , Immunotherapy, Adoptive/methods , Induced Pluripotent Stem Cells/metabolism , Mice , Organoids/metabolism , Receptors, Chimeric Antigen/metabolism
6.
Cell Rep Med ; 2(11): 100449, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34841295

ABSTRACT

Cell-based immunotherapy has become the new-generation cancer medicine, and "off-the-shelf" cell products that can be manufactured at large scale and distributed readily to treat patients are necessary. Invariant natural killer T (iNKT) cells are ideal cell carriers for developing allogeneic cell therapy because they are powerful immune cells targeting cancers without graft-versus-host disease (GvHD) risk. However, healthy donor blood contains extremely low numbers of endogenous iNKT cells. Here, by combining hematopoietic stem cell (HSC) gene engineering and in vitro differentiation, we generate human allogeneic HSC-engineered iNKT (AlloHSC-iNKT) cells at high yield and purity; these cells closely resemble endogenous iNKT cells, effectively target tumor cells using multiple mechanisms, and exhibit high safety and low immunogenicity. These cells can be further engineered with chimeric antigen receptor (CAR) to enhance tumor targeting or/and gene edited to ablate surface human leukocyte antigen (HLA) molecules and further reduce immunogenicity. Collectively, these preclinical studies demonstrate the feasibility and cancer therapy potential of AlloHSC-iNKT cell products and lay a foundation for their translational and clinical development.


Subject(s)
Allogeneic Cells/immunology , Cell Engineering , Hematopoietic Stem Cells/immunology , Immunotherapy , Natural Killer T-Cells/immunology , Neoplasms/immunology , Neoplasms/therapy , Allogeneic Cells/metabolism , Animals , Cell Line, Tumor , Gene Expression Profiling , HLA Antigens/metabolism , Hematopoietic Stem Cells/metabolism , Humans , Mice, Inbred NOD , Mice, SCID , Natural Killer T-Cells/metabolism , Phenotype , Receptors, Chimeric Antigen/metabolism , Transcriptome/genetics
7.
Front Immunol ; 12: 716661, 2021.
Article in English | MEDLINE | ID: mdl-34394122

ABSTRACT

Although metabolic pathways have been shown to control differentiation and activation in peripheral T cells, metabolic studies on thymic T cell development are still lacking, especially in human tissue. In this study, we use transcriptomics and extracellular flux analyses to investigate the metabolic profiles of primary thymic and in vitro-derived mouse and human thymocytes. Core metabolic pathways, specifically glycolysis and oxidative phosphorylation, undergo dramatic changes between the double-negative (DN), double-positive (DP), and mature single-positive (SP) stages in murine and human thymus. Remarkably, despite the absence of the complex multicellular thymic microenvironment, in vitro murine and human T cell development recapitulated the coordinated decrease in glycolytic and oxidative phosphorylation activity between the DN and DP stages seen in primary thymus. Moreover, by inducing in vitro T cell differentiation from Rag1-/- mouse bone marrow, we show that reduced metabolic activity at the DP stage is independent of TCR rearrangement. Thus, our findings suggest that highly conserved metabolic transitions are critical for thymic T cell development.


Subject(s)
Cell Differentiation , Energy Metabolism , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , Thymocytes/cytology , Thymocytes/metabolism , Animals , Biological Evolution , Biomarkers , Cell Line , Computational Biology/methods , Gene Expression Profiling , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/immunology , Hematopoietic Stem Cells/metabolism , Humans , Lymphopoiesis , Metabolome , Metabolomics/methods , Mice , Organoids , Thymocytes/immunology , Tissue Culture Techniques
9.
Cell Rep ; 33(4): 108320, 2020 10 27.
Article in English | MEDLINE | ID: mdl-33113379

ABSTRACT

We report a serum-free, 3D murine artificial thymic organoid (M-ATO) system that mimics normal murine thymopoiesis with the production of all T cell stages, from early thymic progenitors to functional single-positive (CD8SP and CD4SP) TCRαß and TCRγδ cells. RNA sequencing aligns M-ATO-derived populations with phenotypically identical primary thymocytes. M-ATOs initiated with Rag1-/- marrow produce the same differentiation block as seen in the endogenous thymus, and Notch signaling patterns in M-ATOs mirror primary thymopoiesis. M-ATOs initiated with defined hematopoietic stem cells (HSCs) and lymphoid progenitors from marrow and thymus generate each of the downstream differentiation stages, allowing the kinetics of T cell differentiation to be tracked. Remarkably, single HSCs deposited into each M-ATO generate the complete trajectory of T cell differentiation, producing diverse TCR repertoires across clones that largely match endogenous thymus. M-ATOs represent a highly reproducible and efficient experimental platform for the interrogation of clonal thymopoiesis from HSCs.


Subject(s)
Hematopoietic Stem Cells/metabolism , Thymus Gland/physiology , Animals , Cell Differentiation , Hematopoietic Stem Cells/cytology , Mice
10.
Blood Adv ; 4(12): 2611-2616, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32556283

ABSTRACT

The study of early T-cell development in humans is challenging because of limited availability of thymic samples and the limitations of in vitro T-cell differentiation assays. We used an artificial thymic organoid (ATO) platform generated by aggregating a DLL4-expressing stromal cell line (MS5-hDLL4) with CD34+ cells isolated from bone marrow or mobilized peripheral blood to study T-cell development from CD34+ cells of patients carrying hematopoietic intrinsic or thymic defects that cause T-cell lymphopenia. We found that AK2 deficiency is associated with decreased cell viability and an early block in T-cell development. We observed a similar defect in a patient carrying a null IL2RG mutation. In contrast, CD34+ cells from a patient carrying a missense IL2RG mutation reached full T-cell maturation, although cell numbers were significantly lower than in controls. CD34+ cells from patients carrying RAG mutations were able to differentiate to CD4+CD8+ cells, but not to CD3+TCRαß+ cells. Finally, normal T-cell differentiation was observed in a patient with complete DiGeorge syndrome, consistent with the extra-hematopoietic nature of the defect. The ATO system may help determine whether T-cell deficiency reflects hematopoietic or thymic intrinsic abnormalities and define the exact stage at which T-cell differentiation is blocked.


Subject(s)
Hematopoietic Stem Cells , Lymphopenia , Antigens, CD34 , Cell Differentiation , Humans , Organoids
11.
Cell Stem Cell ; 24(3): 376-389.e8, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30661959

ABSTRACT

The ability to generate T cells from pluripotent stem cells (PSCs) has the potential to transform autologous T cell immunotherapy by facilitating universal, off-the-shelf cell products. However, differentiation of human PSCs into mature, conventional T cells has been challenging with existing methods. We report that a continuous 3D organoid system induced an orderly sequence of commitment and differentiation from PSC-derived embryonic mesoderm through hematopoietic specification and efficient terminal differentiation to naive CD3+CD8αß+ and CD3+CD4+ conventional T cells with a diverse T cell receptor (TCR) repertoire. Introduction of an MHC class I-restricted TCR in PSCs produced naive, antigen-specific CD8αß+ T cells that lacked endogenous TCR expression and showed anti-tumor efficacy in vitro and in vivo. Functional assays and RNA sequencing aligned PSC-derived T cells with primary naive CD8+ T cells. The PSC-artificial thymic organoid (ATO) system presented here is an efficient platform for generating functional, mature T cells from human PSCs.


Subject(s)
Cell Differentiation , Organoids/cytology , Pluripotent Stem Cells/cytology , T-Lymphocytes/cytology , Animals , Cells, Cultured , Humans , K562 Cells , Mice , Mice, Inbred NOD , Organoids/immunology , Pluripotent Stem Cells/immunology , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/immunology
12.
Clin Cancer Res ; 25(3): 1000-1011, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30409823

ABSTRACT

PURPOSE: To improve persistence of adoptively transferred T-cell receptor (TCR)-engineered T cells and durable clinical responses, we designed a clinical trial to transplant genetically-modified hematopoietic stem cells (HSCs) together with adoptive cell transfer of T cells both engineered to express an NY-ESO-1 TCR. Here, we report the preclinical studies performed to enable an investigational new drug (IND) application. EXPERIMENTAL DESIGN: HSCs transduced with a lentiviral vector expressing NY-ESO-1 TCR and the PET reporter/suicide gene HSV1-sr39TK and T cells transduced with a retroviral vector expressing NY-ESO-1 TCR were coadministered to myelodepleted HLA-A2/Kb mice within a formal Good Laboratory Practice (GLP)-compliant study to demonstrate safety, persistence, and HSC differentiation into all blood lineages. Non-GLP experiments included assessment of transgene immunogenicity and in vitro viral insertion safety studies. Furthermore, Good Manufacturing Practice (GMP)-compliant cell production qualification runs were performed to establish the manufacturing protocols for clinical use. RESULTS: TCR genetically modified and ex vivo-cultured HSCs differentiated into all blood subsets in vivo after HSC transplantation, and coadministration of TCR-transduced T cells did not result in increased toxicity. The expression of NY-ESO-1 TCR and sr39TK transgenes did not have a detrimental effect on gene-modified HSC's differentiation to all blood cell lineages. There was no evidence of genotoxicity induced by the lentiviral vector. GMP batches of clinical-grade transgenic cells produced during qualification runs had adequate stability and functionality. CONCLUSIONS: Coadministration of HSCs and T cells expressing an NY-ESO-1 TCR is safe in preclinical models. The results presented in this article led to the FDA approval of IND 17471.


Subject(s)
Genetic Therapy/methods , Hematopoietic Stem Cells/immunology , Immunotherapy, Adoptive/methods , Neoplasms/therapy , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/immunology , Animals , Antigens, Neoplasm/genetics , Cells, Cultured , Clinical Trials as Topic , Drugs, Investigational/therapeutic use , HLA-A2 Antigen/genetics , Hematopoietic Stem Cells/metabolism , Humans , Membrane Proteins/genetics , Mice, Inbred C57BL , Mice, Transgenic , Neoplasms/genetics , Neoplasms/immunology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/metabolism
13.
Exp Hematol ; 71: 24-31, 2019 03.
Article in English | MEDLINE | ID: mdl-30590093

ABSTRACT

The generation of T cells from human pluripotent stem cells (PSCs) opens a valuable experimental window into developmental hematopoiesis and raises the possibility of a new therapeutic approach for T-cell immunotherapy. After directing PSCs through mesoderm and early hematopoietic developmental stages, commitment to the T-cell lineage has been achieved by several groups using coculture with stromal cells that express a notch ligand, recapitulating the critical signals that initiate the first stages of normal T-cell differentiation in the thymus. However, positive selection and the production of mature T cells from human PSCs have been limited to date. Nonetheless, T-lineage cells have been generated from PSCs with tumor antigen specificity either through a prearranged clonal T-cell receptor (TCR) or lentiviral-mediated expression of chimeric antigen receptors. The recent development of a 3D artificial organoid model has demonstrated that PSCs can generate mature conventional T cells that are fully functional and express a diverse TCR repertoire. Introduction of a transgenic TCR at the PSC stage allows for the production of tumor-antigen-specific, mature conventional T cells. The tools of gene editing in PSCs are ideally suited to produce off-the-shelf universal products for T-cell immunotherapy. In this review, we describe the studies that have led to this exciting moment in PSC biology and discuss translation to clinical applications.


Subject(s)
Lymphopoiesis , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , Animals , Biomarkers , Cell Culture Techniques , Cell Differentiation , Cellular Reprogramming , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Humans , Immunotherapy , Neoplasms/immunology , Neoplasms/metabolism , Neoplasms/therapy
14.
Nat Methods ; 14(5): 521-530, 2017 May.
Article in English | MEDLINE | ID: mdl-28369043

ABSTRACT

Studies of human T cell development require robust model systems that recapitulate the full span of thymopoiesis, from hematopoietic stem and progenitor cells (HSPCs) through to mature T cells. Existing in vitro models induce T cell commitment from human HSPCs; however, differentiation into mature CD3+TCR-αß+ single-positive CD8+ or CD4+ cells is limited. We describe here a serum-free, artificial thymic organoid (ATO) system that supports efficient and reproducible in vitro differentiation and positive selection of conventional human T cells from all sources of HSPCs. ATO-derived T cells exhibited mature naive phenotypes, a diverse T cell receptor (TCR) repertoire and TCR-dependent function. ATOs initiated with TCR-engineered HSPCs produced T cells with antigen-specific cytotoxicity and near-complete lack of endogenous TCR Vß expression, consistent with allelic exclusion of Vß-encoding loci. ATOs provide a robust tool for studying human T cell differentiation and for the future development of stem-cell-based engineered T cell therapies.


Subject(s)
Artificial Organs , Cell Differentiation , Hematopoietic Stem Cells/cytology , Organoids/cytology , T-Lymphocytes/cytology , Thymus Gland/cytology , Biotechnology/methods , Hematopoietic Stem Cells/immunology , Humans , Organoids/immunology , Stem Cells/cytology , Stem Cells/immunology , T-Lymphocytes/immunology , Thymus Gland/immunology
15.
Nat Commun ; 7: 12376, 2016 08 10.
Article in English | MEDLINE | ID: mdl-27507714

ABSTRACT

DNA double strand break (DSB) repair is critical for generation of B-cell receptors, which are pre-requisite for B-cell progenitor survival. However, the transcription factors that promote DSB repair in B cells are not known. Here we show that MEF2C enhances the expression of DNA repair and recombination factors in B-cell progenitors, promoting DSB repair, V(D)J recombination and cell survival. Although Mef2c-deficient mice maintain relatively intact peripheral B-lymphoid cellularity during homeostasis, they exhibit poor B-lymphoid recovery after sub-lethal irradiation and 5-fluorouracil injection. MEF2C binds active regulatory regions with high-chromatin accessibility in DNA repair and V(D)J genes in both mouse B-cell progenitors and human B lymphoblasts. Loss of Mef2c in pre-B cells reduces chromatin accessibility in multiple regulatory regions of the MEF2C-activated genes. MEF2C therefore protects B lymphopoiesis during stress by ensuring proper expression of genes that encode DNA repair and B-cell factors.


Subject(s)
DNA Breaks, Double-Stranded , Hematopoiesis/physiology , Precursor Cells, B-Lymphoid/physiology , V(D)J Recombination/physiology , Animals , Cell Survival/drug effects , Cell Survival/physiology , Cell Survival/radiation effects , Chromatin/metabolism , Female , Fluorouracil/pharmacology , Hematopoiesis/drug effects , Hematopoiesis/radiation effects , MEF2 Transcription Factors/physiology , Male , Mice , Precursor Cells, B-Lymphoid/drug effects , Precursor Cells, B-Lymphoid/radiation effects , Whole-Body Irradiation/adverse effects
16.
EMBO J ; 34(6): 759-77, 2015 Mar 12.
Article in English | MEDLINE | ID: mdl-25564442

ABSTRACT

Scl/Tal1 confers hemogenic competence and prevents ectopic cardiomyogenesis in embryonic endothelium by unknown mechanisms. We discovered that Scl binds to hematopoietic and cardiac enhancers that become epigenetically primed in multipotent cardiovascular mesoderm, to regulate the divergence of hematopoietic and cardiac lineages. Scl does not act as a pioneer factor but rather exploits a pre-established epigenetic landscape. As the blood lineage emerges, Scl binding and active epigenetic modifications are sustained in hematopoietic enhancers, whereas cardiac enhancers are decommissioned by removal of active epigenetic marks. Our data suggest that, rather than recruiting corepressors to enhancers, Scl prevents ectopic cardiogenesis by occupying enhancers that cardiac factors, such as Gata4 and Hand1, use for gene activation. Although hematopoietic Gata factors bind with Scl to both activated and repressed genes, they are dispensable for cardiac repression, but necessary for activating genes that enable hematopoietic stem/progenitor cell development. These results suggest that a unique subset of enhancers in lineage-specific genes that are accessible for regulators of opposing fates during the time of the fate decision provide a platform where the divergence of mutually exclusive fates is orchestrated.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Differentiation/physiology , Enhancer Elements, Genetic/physiology , Gene Expression Regulation, Developmental/physiology , Hematopoietic Stem Cells/cytology , Mesoderm/embryology , Myoblasts, Cardiac/cytology , Proto-Oncogene Proteins/metabolism , Cells, Cultured , Chromatin Immunoprecipitation , Gene Expression Profiling , Gene Library , Hematopoietic Stem Cells/physiology , Humans , Mesoderm/metabolism , Microarray Analysis , Models, Biological , Molecular Sequence Data , Myoblasts, Cardiac/physiology , Sequence Analysis, RNA , T-Cell Acute Lymphocytic Leukemia Protein 1
17.
Stem Cells ; 32(9): 2386-96, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24801626

ABSTRACT

A system that allows manipulation of the human thymic microenvironment is needed both to elucidate the extrinsic mechanisms that control human thymopoiesis and to develop potential cell therapies for thymic insufficiency. In this report, we developed an implantable thymic microenvironment composed of two human thymic stroma populations critical for thymopoiesis; thymic epithelial cells (TECs) and thymic mesenchyme (TM). TECs and TM from postnatal human thymi were cultured in specific conditions, allowing cell expansion and manipulation of gene expression, before reaggregation into a functional thymic unit. Human CD34+ hematopoietic stem and progenitor cells (HSPC) differentiated into T cells in the aggregates in vitro and in vivo following inguinal implantation of aggregates in immune deficient mice. Cord blood HSPC previously engrafted into murine bone marrow (BM), migrated to implants, and differentiated into human T cells with a broad T cell receptor repertoire. Furthermore, lentiviral-mediated expression of vascular endothelial growth factor in TM enhanced implant size and function and significantly increased thymocyte production. These results demonstrate an in vivo system for the generation of T cells from human HSPC and represent the first model to allow manipulation of gene expression and cell composition in the microenvironment of the human thymus.


Subject(s)
Thymus Gland/cytology , Tissue Engineering/methods , Vascular Endothelial Growth Factor A/metabolism , Animals , Cell Proliferation/physiology , Cellular Microenvironment/physiology , Gene Expression , Humans , Lymphopoiesis/physiology , Mice , Mice, Inbred NOD , Mice, SCID , Thymus Gland/drug effects
19.
Cell ; 150(3): 590-605, 2012 Aug 03.
Article in English | MEDLINE | ID: mdl-22863011

ABSTRACT

Endothelium in embryonic hematopoietic tissues generates hematopoietic stem/progenitor cells; however, it is unknown how its unique potential is specified. We show that transcription factor Scl/Tal1 is essential for both establishing the hematopoietic transcriptional program in hemogenic endothelium and preventing its misspecification to a cardiomyogenic fate. Scl(-/-) embryos activated a cardiac transcriptional program in yolk sac endothelium, leading to the emergence of CD31+Pdgfrα+ cardiogenic precursors that generated spontaneously beating cardiomyocytes. Ectopic cardiogenesis was also observed in Scl(-/-) hearts, where the disorganized endocardium precociously differentiated into cardiomyocytes. Induction of mosaic deletion of Scl in Scl(fl/fl)Rosa26Cre-ER(T2) embryos revealed a cell-intrinsic, temporal requirement for Scl to prevent cardiomyogenesis from endothelium. Scl(-/-) endothelium also upregulated the expression of Wnt antagonists, which promoted rapid cardiomyocyte differentiation of ectopic cardiogenic cells. These results reveal unexpected plasticity in embryonic endothelium such that loss of a single master regulator can induce ectopic cardiomyogenesis from endothelial cells.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Endothelium, Vascular/embryology , Heart/embryology , Proto-Oncogene Proteins/metabolism , Animals , Cadherins/metabolism , Core Binding Factor Alpha 2 Subunit/metabolism , Female , Gene Expression Regulation, Developmental , Hemangioblasts , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , LIM-Homeodomain Proteins/metabolism , Mesoderm/metabolism , Mice , Myocytes, Cardiac/cytology , Placenta/blood supply , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Pregnancy , Receptor, Platelet-Derived Growth Factor alpha/metabolism , T-Cell Acute Lymphocytic Leukemia Protein 1 , Transcription Factors/metabolism , Yolk Sac/blood supply
20.
Curr Opin Hematol ; 16(3): 165-72, 2009 May.
Article in English | MEDLINE | ID: mdl-19346941

ABSTRACT

PURPOSE OF REVIEW: Animals are heterotrophic and use sugar as their principal source of carbon. Every cell possesses at least one hexose transport system and of all cells, human erythrocytes express the highest level of the facilitative glucose transporter 1 (GLUT1). On the basis of human data, it was assumed that all mammalian erythrocytes express GLUT1 and that this transporter functions similarly in red cells of different species. RECENT FINDINGS: Analyses of erythrocytes from diverse mammalian species showed that GLUT1 is restricted to those few mammals who are unable to synthesize ascorbic acid from glucose comprising higher primates, guinea pigs, and fruit bats. In humans, erythroid differentiation results in a dramatic GLUT1-mediated increase in the transport of an oxidized form of vitamin C, L-dehydroascorbic acid. This preferential L-dehydroascorbic acid uptake is regulated by the association of GLUT1 with stomatin, an integral erythrocyte membrane protein. In species that produce ascorbic acid, erythroid GLUT1 expression appears to be limited to the fetal and neonatal period. In the case of murine erythrocytes, glucose transport function is thereafter achieved by GLUT4, a GLUT originally characterized by its sensitivity to insulin. SUMMARY: Recent research has shown that erythrocyte expression of GLUT-type transporters varies between mammalian species and that their functions in this context can differ. These data identify new arrangements of GLUT members in red cell metabolism.


Subject(s)
Erythrocytes/metabolism , Glucose Transporter Type 1/physiology , Glucose Transporter Type 4/physiology , Animals , Ascorbic Acid/metabolism , Biological Transport , Cell Differentiation , Erythrocytes/cytology , Glucose Transporter Type 1/genetics , Glucose Transporter Type 4/genetics , Humans , Mammals
SELECTION OF CITATIONS
SEARCH DETAIL
...