Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Microbiol ; 2024: 6959403, 2024.
Article in English | MEDLINE | ID: mdl-38784405

ABSTRACT

Pseudomonas aeruginosa is an opportunistic pathogen found in a wide variety of environments, including soil, water, and habitats associated with animals, humans, and plants. From a One Health perspective, which recognizes the interconnectedness of human, animal, and environmental health, it is important to study the virulence characteristics and antibiotic susceptibility of environmental bacteria. In this study, we compared the virulence properties and the antibiotic resistance profiles of seven isolates collected from the Gulf of Mexico with those of seven clinical strains of P. aeruginosa. Our results indicate that the marine and clinical isolates tested exhibit similar virulence properties; they expressed different virulence factors and were able to kill Galleria mellonella larvae, an animal model commonly used to analyze the pathogenicity of many bacteria, including P. aeruginosa. In contrast, the clinical strains showed higher antibiotic resistance than the marine isolates. Consistently, the clinical strains exhibited a higher prevalence of class 1 integron, an indicator of anthropogenic impact, compared with the marine isolates. Thus, our results indicate that the P. aeruginosa marine strains analyzed in this study, isolated from the Gulf of Mexico, have similar virulence properties, but lower antibiotic resistance, than those from hospitals.

2.
J Basic Microbiol ; 63(1): 51-63, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36207285

ABSTRACT

Pyocyanin is a phenazine with redox activity produced by Pseudomonas aeruginosa that is harmful to other bacteria and eukaryotic organisms by generating reactive oxygen species. Gene regulation of pyocyanin synthesis has been addressed in the PAO1 and PA14 strains and involves the three-quorum sensing systems Las, Rhl, and Pqs; the regulators RsaL, MvaU, and RpoS, and the posttranscriptional Rsm system, among others. Here, we determined how RsmA regulates pyocyanin synthesis in P. aeruginosa ID4365, an overproducer strain. We found that, in the protease peptone glucose ammonium salts medium, rsmA inactivation increases pyocyanin production compared with the wild-type strains ID4365, PAO, and PA14. We showed that RsmA regulates inversely the expression of both phz operons involved in pyocyanin synthesis; particularly the phz2 operon is positively regulated at the transcriptional level indirectly through MvaU. In addition, we found that the phz1 operon contributes mainly to pyocyanin synthesis and that RsmA negatively regulates phzM and phzS expression. Finally, we showed that translation of the sigma factor RpoS is positively regulated by RsmA, and the expression of rpoS under an independent promoter decreases pyocyanin production in the IDrsmA strain. These results indicate that RsmA regulates not only the genes for pyocyanin production but also their regulators.


Subject(s)
Pseudomonas aeruginosa , Pyocyanine , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Bacteria/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...