Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Waste Manag ; 120: 280-289, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33316548

ABSTRACT

The electrochemical energy storage performance of activated carbons (ACs) obtained from coffee-derived biowastes was assessed. ACs were obtained from spent coffee ground second waste, after polyphenol extraction, by means of a hydrothermal process followed by physical or chemical activation. The resulting materials exhibited microporous structures with a total specific area between 585 and 2330 m2·g-1. Scanning electron microscopy (SEM) revealed a highly porous microstructure in the case of the chemically activated carbons, while physical activation led to a cracked micro-sized morphology. The electrochemical properties of the materials for supercapacitor applications were investigated in 1 M Na2SO4. After chemical activation, the coffee-derived material displayed a capacitance of 84 F·g-1 at 1 A·g-1 in a 1.9 V voltage window, with 70% capacitance retention at 10 A·g-1 and 85% retention after 5000 cycles of continuous charge-discharge. This work demonstrates how coffee secondary biowaste can be conveniently activated to perform as electrochemical energy storage material, contributing to its revalorization and reinsertion in a circular economy.


Subject(s)
Charcoal , Coffee , Electric Capacitance , Electrodes , Porosity
2.
Mater Sci Eng C Mater Biol Appl ; 94: 126-138, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30423694

ABSTRACT

Magnesium alloys have shown high potential as biodegradable implants for bone repair applications. However, their fast degradation in physiological media demands tuning their corrosion rate to accompany the natural tissue healing processes. Here, a new bi-layered silane-TiO2/collagen coating efficient in stabilizing and biofunctionalizing the surface of AZ31 and ZE41 Mg alloys is presented. Corrosion tests performed in cell culture medium over 7 weeks showed that the bi-layered coating promotes the formation of a stable layer of Mg(OH)2/MgCO3/CaCO3 that provides effective protection to the alloys at advanced immersion stages. The intrinsic reactivity of each alloy plus formation of transitory calcium phosphate phases, resulted in distinct corrosion behavior in the short term. Cell experiments showed that the bi-layered coating improved osteoblasts and fibroblasts proliferation compared to bare and silane-TiO2-coated alloys. Different responses in terms of cell adhesion could be related to the intrinsic corrosion rate of each alloy and some toxicity from the alloying elements. The results evidenced the complex interplay between alloy nature, coating-alloy combination and cell type. The silane-TiO2/collagen coating showed to be a promising strategy to improve cell response and viability and to control degradation rate of Mg alloys in the long term.


Subject(s)
Alloys/pharmacology , Coated Materials, Biocompatible/pharmacology , Collagen/pharmacology , Magnesium/pharmacology , Silanes/pharmacology , Titanium/pharmacology , Animals , Cell Shape/drug effects , Cell Survival/drug effects , Corrosion , Dielectric Spectroscopy , Fibrillar Collagens/ultrastructure , Fibroblasts/cytology , Fibroblasts/drug effects , Humans , Osteoblasts/cytology , Osteoblasts/drug effects , Osteoblasts/ultrastructure , Rats , Spectrum Analysis, Raman
SELECTION OF CITATIONS
SEARCH DETAIL
...