Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Heart Lung Circ ; 28(2): 263-271, 2019 Feb.
Article in English | MEDLINE | ID: mdl-29503239

ABSTRACT

BACKGROUND: Preconditioning of cell recipients may exert a significant role in attenuating the hostility of the infarction milieu, thereby enhancing the efficacy of cell therapy. This study was conducted to examine whether exercise training potentiates the cardioprotective effects of adipose-derived stem cell (ADSC) transplantation following myocardial infarction (MI) in rats. METHODS: Four groups of female Fisher-344 rats were studied: Sham; non-trained rats with MI (sMI); non-trained rats with MI submitted to ADSCs transplantation (sADSC); trained rats with MI submitted to ADSCs (tADSC). Rats were trained 9 weeks prior to MI and ADSCs transplantation. Echocardiography was applied to assess cardiac function. Myocardial performance was evaluated in vitro. Protein expression analyses were carried out by immunoblotting. Periodic acid-Schiff staining was used to analyse capillary density and apoptosis was evaluated with terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assay. RESULTS: Echocardiography performed 4 weeks after the infarction revealed attenuated scar size in the both sADSC and tADSC groups compared to the sMI group. However, fractional shortening was improved only in the tADSC group. In vitro myocardial performance was similar between the tADSC and Sham groups. The expression of phosphoSer473Akt1 and VEGF were found to be higher in the hearts of the tADSC group compared to both the sADSC and sMI groups. Histologic analysis demonstrated that tADSC rats had higher capillary density in the remote and border zones of the infarcted sites compared to the sMI rats. CONCLUSIONS: Preconditioning with exercise induces a pro-angiogenic milieu that may potentiate the therapeutic effects of ADSCs on cardiac remodelling following MI.


Subject(s)
Myocardial Infarction , Physical Conditioning, Animal , Stem Cell Transplantation , Ventricular Remodeling , Animals , Female , Disease Models, Animal , Myocardial Infarction/diagnosis , Myocardial Infarction/physiopathology , Myocardial Infarction/therapy , Physical Conditioning, Animal/methods , Random Allocation , Rats, Inbred F344 , Stem Cell Transplantation/methods , Ventricular Remodeling/physiology , Rats
2.
Front Physiol ; 8: 23, 2017.
Article in English | MEDLINE | ID: mdl-28194115

ABSTRACT

Low-level laser therapy (LLLT) has been targeted as a promising approach that can mitigate post-infarction cardiac remodeling. There is some interesting evidence showing that the beneficial role of the LLLT could persist long-term even after the end of the application, but it remains to be systematically evaluated. Therefore, the present study aimed to test the hypothesis that LLLT beneficial effects in the early post-infarction cardiac remodeling could remain in overt heart failure even with the disruption of irradiations. Female Wistar rats were subjected to the coronary occlusion to induce myocardial infarction or Sham operation. A single LLLT application was carried out after 60 s and 3 days post-coronary occlusion, respectively. Echocardiography was performed 3 days and at the end of the experiment (5 weeks) to evaluate cardiac function. After the last echocardiographic examination, LV hemodynamic evaluation was performed at baseline and on sudden afterload increases. Compared with the Sham group, infarcted rats showed increased systolic and diastolic internal diameter as well as a depressed shortening fraction of LV. The only benefit of the LLLT was a higher shortening fraction after 3 days of infarction. However, treated-LLLT rats show a lower shortening fraction in the 5th week of study when compared with Sham and non-irradiated rats. A worsening of cardiac function was confirmed in the hemodynamic analysis as evidenced by the higher LV end-diastolic pressure and lower +dP/dt and -dP/dt with five weeks of study. Cardiac functional reserve was also impaired by infarction as evidenced by an attenuated response of stroke work index and cardiac output to a sudden afterload stress, without LLLT repercussions. No significant differences were found in the myocardial expression of Akt1/VEGF pathway. Collectively, these findings illustrate that LLLT improves LV systolic function in the early post-infarction cardiac remodeling. However, this beneficial effect may be dependent on the maintenance of phototherapy. Long-term studies with LLLT application are needed to establish whether these effects ultimately translate into improved cardiac remodeling.

3.
Can J Physiol Pharmacol ; 94(6): 643-50, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27082032

ABSTRACT

The effects of chronic treatment with digitoxin on arterial baroreceptor sensitivity for heart rate (HR) and renal sympathetic nerve activity (rSNA) control, cardiopulmonary reflex, and autonomic HR control in an animal model of heart failure (HF) were evaluated. Wistar rats were treated with digitoxin, which was administered in their daily feed (1 mg/kg per day) for 60 days. The following 3 experimental groups were evaluated: sham, HF, and HF treated with digitoxin (HF + DIG). We observed an increase in rSNA in the HF group (190 ± 29 pps, n = 5) compared with the sham group (98 ± 14 pps, n = 5). Digitoxin treatment prevented an increase in rSNA (98 ± 14 pps, n = 7). Therefore, arterial baroreceptor sensitivity was decreased in the HF group (-1.24 ± 0.07 bpm/mm Hg, n = 8) compared with the sham group (-2.27 ± 0.23 bpm/mm Hg, n = 6). Digitoxin did not alter arterial baroreceptor sensitivity in the HF + DIG group. Finally, the HF group showed an increased low frequency band (LFb: 23 ± 5 ms(2), n = 8) and a decreased high frequency band (HFb: 77 ± 5 ms(2), n = 8) compared with the sham group (LFb: 14 ± 3 ms(2); HFb: 86 ± 3 ms(2), n = 9); the HF+DIG group exhibited normalized parameters (LFb: 15 ± 3 ms(2); HFb: 85 ± 3 ms(2), n = 9). In conclusion, the benefits of decreasing rSNA are not directly related to improvements in peripheral cardiovascular reflexes; such occurrences are due in part to changes in the central nuclei of the brain responsible for autonomic cardiovascular control.


Subject(s)
Blood Pressure/drug effects , Cardiotonic Agents/therapeutic use , Digitoxin/therapeutic use , Heart Failure/drug therapy , Heart Rate/drug effects , Hemodynamics/drug effects , Animals , Autonomic Nervous System/drug effects , Autonomic Nervous System/physiology , Blood Pressure/physiology , Cardiotonic Agents/pharmacology , Digitoxin/pharmacology , Echocardiography, Doppler , Heart Failure/diagnostic imaging , Heart Failure/physiopathology , Heart Rate/physiology , Hemodynamics/physiology , Male , Rats , Rats, Wistar
4.
Mol Cell Biochem ; 402(1-2): 193-202, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25626892

ABSTRACT

The activity of the ubiquitin proteasome system (UPS) and the level of oxidative stress contribute to the transition from compensated cardiac hypertrophy to heart failure in hypertension. Moreover, aerobic exercise training (AET) is an important therapy for the treatment of hypertension, but its effects on the UPS are not completely known. The aim of this study was to evaluate the effect of AET on UPS's activity and oxidative stress level in heart of spontaneously hypertensive rats (SHR). A total of 53 Wistar and SHR rats were randomly divided into sedentary and trained groups. The AET protocol was 5×/week in treadmill for 13 weeks. Exercise tolerance test, non-invasive blood pressure measurement, echocardiographic analyses, and left ventricle hemodynamics were performed during experimental period. The expression of ubiquitinated proteins, 4-hydroxynonenal (4-HNE), Akt, phospho-Akt(ser473), GSK3ß, and phospho-GSK3ß(ser9) were analyzed by western blotting. The evaluation of lipid hydroperoxide concentration was performed using the xylenol orange method, and the proteasomal chymotrypsin-like activity was measured by fluorimetric assay. Sedentary hypertensive group presented cardiac hypertrophy, unaltered expression of total Akt, phospho-Akt, total GSK3ß and phospho-GSK3ß, UPS hyperactivity, increased lipid hydroperoxidation as well as elevated expression of 4-HNE but normal cardiac function. In contrast, AET significantly increased exercise tolerance, decreased resting systolic blood pressure and heart rate in hypertensive animals. In addition, the AET increased phospho-Akt expression, decreased phospho-GSK3ß, and did not alter the expression of total Akt, total GSK3ß, and ubiquitinated proteins, however, significantly attenuated 4-HNE levels, lipid hydroperoxidation, and UPS's activity toward normotensive group levels. Our results provide evidence for the main effect of AET on attenuating cardiac ubiquitin proteasome hyperactivity and oxidative stress in SHR rats.


Subject(s)
Hypertension/therapy , Myocardium/metabolism , Oxidative Stress , Proteasome Endopeptidase Complex/physiology , Animals , Cell Size , Exercise Therapy , Hypertension/metabolism , Male , Myocytes, Cardiac/pathology , Physical Conditioning, Animal , Proteolysis , Rats, Inbred SHR , Rats, Wistar , Signal Transduction , Ubiquitin/metabolism , Ubiquitination , Unfolded Protein Response
5.
PLoS One ; 9(7): e101270, 2014.
Article in English | MEDLINE | ID: mdl-24991808

ABSTRACT

Low-level laser therapy (LLLT) has been used as an anti-inflammatory treatment in several disease conditions, even when inflammation is a secondary consequence, such as in myocardial infarction (MI). However, the mechanism by which LLLT is able to protect the remaining myocardium remains unclear. The present study tested the hypothesis that LLLT reduces inflammation after acute MI in female rats and ameliorates cardiac function. The potential participation of the Renin-Angiotensin System (RAS) and Kallikrein-Kinin System (KKS) vasoactive peptides was also evaluated. LLLT treatment effectively reduced MI size, attenuated the systolic dysfunction after MI, and decreased the myocardial mRNA expression of interleukin-1 beta and interleukin-6 in comparison to the non-irradiated rat tissue. In addition, LLLT treatment increased protein and mRNA levels of the Mas receptor, the mRNA expression of kinin B2 receptors and the circulating levels of plasma kallikrein compared to non-treated post-MI rats. On the other hand, the kinin B1 receptor mRNA expression decreased after LLLT. No significant changes were found in the expression of vascular endothelial growth factor (VEGF) in the myocardial remote area between laser-irradiated and non-irradiated post-MI rats. Capillaries density also remained similar between these two experimental groups. The mRNA expression of the inducible nitric oxide synthase (iNOS) was increased three days after MI, however, this effect was blunted by LLLT. Moreover, endothelial NOS mRNA content increased after LLLT. Plasma nitric oxide metabolites (NOx) concentration was increased three days after MI in non-treated rats and increased even further by LLLT treatment. Our data suggest that LLLT diminishes the acute inflammation in the myocardium, reduces infarct size and attenuates left ventricle dysfunction post-MI and increases vasoactive peptides expression and nitric oxide (NO) generation.


Subject(s)
Gene Expression Regulation/radiation effects , Heart/radiation effects , Low-Level Light Therapy , Myocardial Infarction/radiotherapy , Myocardium/metabolism , Angiotensin-Converting Enzyme 2 , Animals , Female , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Kallikrein-Kinin System/radiation effects , Kallikreins/blood , Myocardial Infarction/metabolism , Myocardial Infarction/physiopathology , Nitric Oxide/blood , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Proto-Oncogene Mas , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Rats , Rats, Wistar , Receptor, Bradykinin B1/genetics , Receptor, Bradykinin B1/metabolism , Receptor, Bradykinin B2/genetics , Receptor, Bradykinin B2/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Renin-Angiotensin System/radiation effects , Vascular Endothelial Growth Factor A/metabolism
6.
PLoS One ; 8(2): e55363, 2013.
Article in English | MEDLINE | ID: mdl-23408975

ABSTRACT

Previous studies have suggested that exercise improves renal and cardiac functions in patients with chronic kidney disease. The aim of this study was to evaluate the effects of long-term aerobic swimming exercise with overload on renal and cardiac function in rats with 5/6 nefrectomy (5/6Nx). Eight Wistar rats were placed into 4 groups: Control (C), Control+Exercise (E), Sedentary 5/6Nx (NxS) and 5/6Nx+Exercise (NxE). The rats were subjected to swimming exercise sessions with overload for 30 min five days per week for five weeks. Exercise reduced the effect of 5/6Nx on creatinine clearance compared to the NxS group. In addition, exercise minimized the increase in mean proteinuria compared to the NxS group (96.9±10.0 vs. 51.4±9.9 mg/24 h; p<0.05). Blood pressure was higher in the NxS and NxE groups compared to the C and E groups (216±4 and 178±3 vs. 123±2 and 124±2 mm Hg, p<0.05). In the 200 glomeruli that were evaluated, the NxS group had a higher sclerosis index than did the NxE group (16% vs. 2%, p<0.05). Echocardiography demonstrated a higher anterior wall of the left ventricle (LV) in diastole in the NxS group compared with the C, E and NxE groups. The NxS group also had a higher LV posterior wall in diastole and systole compared with the E group. The developed isometric tension in Lmax of the heart papillary muscle was lower in the NxS group compared with the C, E and NxE groups. These results suggested that exercise in 5/6Nx animals might reduce the progression of renal disease and lessen the cardiovascular impact of a reduction in renal mass.


Subject(s)
Heart/physiopathology , Kidney Failure, Chronic/physiopathology , Kidney/physiopathology , Physical Conditioning, Animal , Animals , Echocardiography , Male , Rats , Rats, Wistar
7.
J Interv Card Electrophysiol ; 36(1): 5-11; discussion 11, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23080332

ABSTRACT

PURPOSE: Late lesion extension may be involved in the genesis of delayed radiofrequency (RF) effects. Because RF lesion is thermally mediated, we hypothesized that induction of heat shock response (thermotolerance) would modulate lesion healing. We evaluated the effects of thermotolerance on the dimensions and remodeling of RF lesions in a rat model of heart failure. METHODS: Wistar rats (weight 300 g) subjected to heat stress (n = 22, internal temperature of 42 °C for 10 min) were compared to controls (n = 22, internal temperature of 37 °C for 10 min). After 48 h (peak of HSP70 myocardial concentration), a modified unipolar RF lesion (customized catheter, tip 4.5 mm in diameter; 12 W; 10 s) was created on the left ventricular free wall. Animals were sacrificed 2 h (n = 10 per group) and 4 weeks (n = 12 per group) after ablation for lesion analysis. An echocardiogram was obtained at 4 weeks. RESULTS: There was no difference between groups regarding the size of acute (controls 27 ± 2 vs. treated 27 ± 3 mm(2)) and chronic lesions (controls 17 ± 1 vs. treated 19 ± 1 mm(2)). Histology of lesions did not differ between groups. The echocardiogram revealed dilation of the cavities and moderate systolic dysfunction without difference between groups. Acute lesion dimensions were similar between control and treated animals over time (ablation undertaken 3, 12, 24, 48, and 72 h after hyperthermia) and also using a conventional ablation catheter (50 °C; 15 W; 10 s). CONCLUSION: Thermotolerance does not reduce the size or remodeling of RF lesions in the rat myocardium.


Subject(s)
Body Temperature , Catheter Ablation/methods , Heart Failure/surgery , Animals , Blotting, Western , Chi-Square Distribution , Disease Models, Animal , Echocardiography , Heart Failure/diagnostic imaging , Heart Failure/physiopathology , Male , Myocardium , Rats , Rats, Wistar , Ventricular Remodeling/physiology , Wound Healing
SELECTION OF CITATIONS
SEARCH DETAIL
...