Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharm Sci ; 156: 105588, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33045367

ABSTRACT

The aim of this study was to optimize the parameters of the complex melt-emulsification process coupled with the spray-drying, in order to maintain the balance between solid lipid microparticles (SLMs) powders aerodynamic performance and salbutamol sulfate release rate. Quality target product profile was identified and risk management and principal component analysis were used to guide formulation development. Obtained dry powders for inhalation (DPIs) were evaluated in terms of SLMs size distribution, morphology, true density, drug content, solid state characterization studies, in vitro aerosol performance and in vitro drug release. SLMs micrographs indicated spherical, porous particles. Selected powders showed satisfactory aerosol performance with a mean mass aerodynamic diameter of around 3 µm and acceptable fine particle fraction (FPF). Addition of trehalose positively affected SLMs aerodynamic properties. The results of in vitro dissolution testing indicated that salbutamol sulfate release from the tested SLMs formulations was modified, in comparison to the raw drug release. In conclusion, SLMs in a form of DPIs were successfully developed and numerous factors that affects SLMs properties were identified in this study. Further research is required for full understanding of each factor's influence on SLMs properties and optimization of DPIs with maximized FPFs.


Subject(s)
Drug Delivery Systems , Dry Powder Inhalers , Administration, Inhalation , Aerosols , Drug Carriers , Drug Compounding , Lipids , Particle Size , Powders
SELECTION OF CITATIONS
SEARCH DETAIL
...