Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Entropy (Basel) ; 24(4)2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35455159

ABSTRACT

We address the process of discounting in random environments, which allows valuation of the future in economic terms. We review several approaches to the problem regarding different well-established stochastic market dynamics in the continuous-time context and include the Feynman-Kac approach. We also review the relation between bond-pricing theory and discounting and introduce both the market price of risk and the risk neutral measure from an intuitive point of view devoid of excessive formalism. We provide the discount for each economic model and discuss their key results. We finally present a summary of our previous empirical studies for several countries on the long-run discount problem.

2.
Entropy (Basel) ; 23(7)2021 Jun 28.
Article in English | MEDLINE | ID: mdl-34203494

ABSTRACT

We consider a discrete-time random walk (xt) which, at random times, is reset to the starting position and performs a deterministic motion between them. We show that the quantity Prxt+1=n+1|xt=n,n→∞ determines if the system is averse, neutral or inclined towards resetting. It also classifies the stationary distribution. Double barrier probabilities, first passage times and the distribution of the escape time from intervals are determined.

3.
Entropy (Basel) ; 23(6)2021 Jun 08.
Article in English | MEDLINE | ID: mdl-34201220

ABSTRACT

Random walks with invariant loop probabilities comprise a wide family of Markov processes with site-dependent, one-step transition probabilities. The whole family, which includes the simple random walk, emerges from geometric considerations related to the stereographic projection of an underlying geometry into a line. After a general introduction, we focus our attention on the elliptic case: random walks on a circle with built-in reflexing boundaries.

4.
Phys Rev E ; 100(4-1): 042103, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31770932

ABSTRACT

We present a general formulation of the resetting problem which is valid for any distribution of resetting intervals and arbitrary underlying processes. We show that in such a general case, a stationary distribution may exist even if the reset-free process is not stationary, as well as a significant decreasing in the mean first-passage time. We apply the general formalism to anomalous diffusion processes which allow simple and explicit expressions for Poissonian resetting events.

5.
Phys Rev E ; 94(3-1): 032132, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27739786

ABSTRACT

In this paper we consider a particular version of the random walk with restarts: random reset events which suddenly bring the system to the starting value. We analyze its relevant statistical properties, like the transition probability, and show how an equilibrium state appears. Formulas for the first-passage time, high-water marks, and other extreme statistics are also derived; we consider counting problems naturally associated with the system. Finally we indicate feasible generalizations useful for interpreting different physical effects.

6.
Article in English | MEDLINE | ID: mdl-26066221

ABSTRACT

We analyze how to value future costs and benefits when they must be discounted relative to the present. We introduce the subject for the nonspecialist and take into account the randomness of the economic evolution by studying the discount function of three widely used processes for the dynamics of interest rates: Ornstein-Uhlenbeck, Feller, and log-normal. Besides obtaining exact expressions for the discount function and simple asymptotic approximations, we show that historical average interest rates overestimate long-run discount rates and that this effect can be large. In other words, long-run discount rates should be substantially less than the average rate observed in the past, otherwise any cost-benefit calculation would be biased in favor of the present and against interventions that may protect the future.

7.
Article in English | MEDLINE | ID: mdl-23410292

ABSTRACT

In this paper we consider a stochastic process that may experience random reset events which suddenly bring the system to the starting value and analyze the relevant statistical magnitudes. We focus our attention on monotonic continuous-time random walks with a constant drift: The process increases between the reset events, either by the effect of the random jumps, or by the action of the deterministic drift. As a result of all these combined factors interesting properties emerge, like the existence (for any drift strength) of a stationary transition probability density function, or the faculty of the model to reproduce power-law-like behavior. General formulas for two extreme statistics, the survival probability, and the mean exit time are also derived. To corroborate in an independent way the results of the paper, Monte Carlo methods were used. These numerical estimations are in full agreement with the analytical predictions.


Subject(s)
Algorithms , Models, Statistical , Monte Carlo Method , Computer Simulation
8.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(5 Pt 1): 051139, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22181400

ABSTRACT

The continuous-time random walk (CTRW) formalism can be adapted to encompass stochastic processes with memory. In this paper we will show how the random combination of two different unbiased CTRWs can give rise to a process with clear drift, if one of them is a CTRW with memory. If one identifies the other one as noise, the effect can be thought of as a kind of stochastic resonance. The ultimate origin of this phenomenon is the same as that of the Parrondo paradox in game theory.

9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(2 Pt 1): 021102, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20866770

ABSTRACT

By appealing to renewal theory we determine the equations that the mean exit time of a continuous-time random walk with drift satisfies both when the present coincides with a jump instant or when it does not. Particular attention is paid to the corrections ensuing from the non-Markovian nature of the process. We show that when drift and jumps have the same sign the relevant integral equations can be solved in closed form. The case when holding times have the classical Erlang distribution is considered in detail.

10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 76(6 Pt 1): 061115, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18233822

ABSTRACT

The usual development of the continuous-time random walk (CTRW) assumes that jumps and time intervals are a two-dimensional set of independent and identically distributed random variables. In this paper, we address the theoretical setting of nonindependent CTRWs where consecutive jumps and/or time intervals are correlated. An exact solution to the problem is obtained for the special but relevant case in which the correlation solely depends on the signs of consecutive jumps. Even in this simple case, some interesting features arise, such as transitions from unimodal to bimodal distributions due to correlation. We also develop the necessary analytical techniques and approximations to handle more general situations that can appear in practice.

11.
Phys Rev E Stat Nonlin Soft Matter Phys ; 72(5 Pt 2): 056101, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16383682

ABSTRACT

We study theoretical and empirical aspects of the mean exit time (MET) of financial time series. The theoretical modeling is done within the framework of continuous time random walk. We empirically verify that the mean exit time follows a quadratic scaling law and it has associated a prefactor which is specific to the analyzed stock. We perform a series of statistical tests to determine which kind of correlation are responsible for this specificity. The main contribution is associated with the autocorrelation property of stock returns. We introduce and solve analytically both two-state and three-state Markov chain models. The analytical results obtained with the two-state Markov chain model allows us to obtain a data collapse of the 20 measured MET profiles in a single master curve.

12.
Phys Rev E Stat Nonlin Soft Matter Phys ; 71(5 Pt 2): 056130, 2005 May.
Article in English | MEDLINE | ID: mdl-16089625

ABSTRACT

We apply the theory of continuous time random walks (CTRWs) to study some aspects involving extreme events in financial time series. We focus our attention on the mean exit time (MET). We derive a general equation for this average and compare it with empirical results coming from high-frequency data of the U.S. dollar and Deutsche mark futures market. The empirical MET follows a quadratic law in the return length interval which is consistent with the CTRW formalism.

13.
Phys Rev E Stat Nonlin Soft Matter Phys ; 67(2 Pt 1): 021112, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12636658

ABSTRACT

We apply the formalism of the continuous-time random walk to the study of financial data. The entire distribution of prices can be obtained once two auxiliary densities are known. These are the probability densities for the pausing time between successive jumps and the corresponding probability density for the magnitude of a jump. We have applied the formalism to data on the U.S. dollar-deutsche mark future exchange, finding good agreement between theory and the observed data.

SELECTION OF CITATIONS
SEARCH DETAIL
...