Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Front Immunol ; 13: 845882, 2022.
Article in English | MEDLINE | ID: mdl-35401504

ABSTRACT

Long-term hemodialysis (HD) patients are considered vulnerable and at high-risk of developing severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection due to their immunocompromised condition. Since COVID-19 associated mortality rates are higher in HD patients, vaccination is critical to protect them. The response towards vaccination against COVID-19 in HD patients is still uncertain and, in particular the cellular immune response is not fully understood. We monitored the humoral and cellular immune responses by analysis of the serological responses and Spike-specific cellular immunity in COVID-19-recovered and naïve HD patients in a longitudinal study shortly after vaccination to determine the protective effects of 1273-mRNA vaccination against SARS-CoV-2 in these high-risk patients. In naïve HD patients, the cellular immune response measured by IL-2 and IFN-É£ secretion needed a second vaccine dose to significantly increase, with a similar pattern for the humoral response. In contrast, COVID-19 recovered HD patients developed a potent and rapid cellular and humoral immune response after the first vaccine dose. Interestingly, when comparing COVID-19 recovered healthy volunteers (HV), previously vaccinated with BNT162b2 vaccine to HD patients vaccinated with 1273-mRNA, these exhibited a more robust immune response that is maintained longitudinally. Our results indicate that HD patients develop strong cellular and humoral immune responses to 1273-mRNA vaccination and argue in favor of personalized immune monitoring studies in HD patients, especially if COVID-19 pre-exposed, to adapt COVID-19 vaccination protocols for this immunocompromised population.


Subject(s)
COVID-19 Vaccines , COVID-19 , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , Humans , Immunity, Humoral , Longitudinal Studies , RNA, Messenger/genetics , Renal Dialysis , SARS-CoV-2 , Vaccination/methods
2.
Cell Rep ; 36(8): 109570, 2021 08 24.
Article in English | MEDLINE | ID: mdl-34390647

ABSTRACT

The rapid development of mRNA-based vaccines against the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) led to the design of accelerated vaccination schedules that have been extremely effective in naive individuals. While a two-dose immunization regimen with the BNT162b2 vaccine has been demonstrated to provide a 95% efficacy in naive individuals, the effects of the second vaccine dose in individuals who have previously recovered from natural SARS-CoV-2 infection has not been investigated in detail. In this study, we characterize SARS-CoV-2 spike-specific humoral and cellular immunity in naive and previously infected individuals during and after two doses of BNT162b2 vaccination. Our results demonstrate that, while the second dose increases both the humoral and cellular immunity in naive individuals, COVID-19 recovered individuals reach their peak of immunity after the first dose. These results suggests that a second dose, according to the current standard regimen of vaccination, may be not necessary in individuals previously infected with SARS-CoV-2.


Subject(s)
COVID-19/prevention & control , T-Lymphocytes/immunology , Vaccines, Synthetic/administration & dosage , Antibodies, Viral/blood , CD40 Ligand/metabolism , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/immunology , Humans , Immunity, Cellular , Immunity, Humoral , Immunoglobulin G/blood , Interferon-gamma/metabolism , Interleukin-2/metabolism , Peptides/immunology , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , Vaccination , Vaccines, Synthetic/immunology , mRNA Vaccines
3.
Int J Mol Sci ; 22(16)2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34445401

ABSTRACT

Class I phosphoinositide 3-kinases (PI3K) are involved in the development of normal and autoimmune responses, including Experimental Autoimmune Encephalomyelitis (EAE), a mouse model for human multiple sclerosis (MS). Here, the role of the ubiquitously expressed class IA PI3K p110α catalytic subunits in EAE has been analyzed using a model of Cre/flox mediated T cell specific deletion of p110α catalytic chain (p110αΔT). Comparison of two month-old (young) and six month-old (mature) p110αΔT mice and their wild type (WT) counterparts indicated loss of spleen CD4+ T cells that increased with age, indicating a role of p110α in their homeostasis. In contrast, CD4+ T regulatory (Treg) cells were enhanced in mature p110αΔT mice when compared to WT mice. Since Myelin Oligodendrocyte Glycoprotein (MOG) peptide-induced EAE is dependent on, or mediated by CD4+ T cells and CD4+ T cell-derived cytokines and controlled by Treg cells, development of EAE in young and mature WT or p110αΔT mice was analyzed. EAE clinical symptoms and disease scores in six month p110αΔT mice were significantly lower than those of mature WT, or young WT and p110αΔT mice. Furthermore, ex vivo antigen activation of lymph node cells from MOG immunized mature p110αΔT mice induced significantly lower levels of IFN-γ and IL-17A than young p110αΔT or young and mature WT mice. Other cytokines including IL-2, IL-10 or TNF-α showed no significant differences between p110αΔT and WT mature mice. Our data show a lower incidence of MOG-induced EAE in mature p110αΔT mice linked to altered T cell homeostasis and lower secretion of inflammatory cytokines.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , Class I Phosphatidylinositol 3-Kinases/genetics , Encephalomyelitis, Autoimmune, Experimental/immunology , Gene Deletion , Animals , Encephalomyelitis, Autoimmune, Experimental/genetics , Homeostasis , Mice , Mice, Inbred C57BL , T-Lymphocytes, Regulatory/metabolism
4.
Int J Mol Sci ; 22(12)2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34203838

ABSTRACT

The phosphatidylinositol 3-kinase (PI3K) family of enzymes plays a determinant role in inflammation and autoimmune responses. However, the implication of the different isoforms of catalytic subunits in these processes is not clear. Rheumatoid arthritis (RA) is a chronic, systemic autoimmune inflammatory disease that entails innate and adaptive immune response elements in which PI3K is a potential hub for immune modulation. In a mouse transgenic model with T-cell-specific deletion of p110α catalytic chain (p110α-/-ΔT), we show the modulation of collagen-induced arthritis (CIA) by this isoform of PI3K. In established arthritis, p110α-/-ΔT mice show decreased prevalence of illness than their control siblings, higher IgG1 titers and lower levels of IL-6 in serum, together with decreased ex vivo Collagen II (CII)-induced proliferation, IL-17A secretion and proportion of naive T cells in the lymph nodes. In a pre-arthritis phase, at 13 days post-Ag, T-cell-specific deletion of p110α chain induced an increased, less pathogenic IgG1/IgG2a antibodies ratio; changes in the fraction of naive and effector CD4+ subpopulations; and an increased number of CXCR5+ T cells in the draining lymph nodes of the p110α-/-ΔT mice. Strikingly, T-cell blasts in vitro obtained from non-immunized p110α-/-ΔT mice showed an increased expression of CXCR5, CD44 and ICOS surface markers and defective ICOS-induced signaling towards Akt phosphorylation. These results, plus the accumulation of cells in the lymph nodes in the early phase of the process, could explain the diminished illness incidence and prevalence in the p110α-/-ΔT mice and suggests a modulation of CIA by the p110α catalytic chain of PI3K, opening new avenues of intervention in T-cell-directed therapies to autoimmune diseases.


Subject(s)
Arthritis, Experimental/enzymology , Arthritis, Experimental/pathology , Catalytic Domain , Class Ia Phosphatidylinositol 3-Kinase/chemistry , Class Ia Phosphatidylinositol 3-Kinase/metabolism , T-Lymphocytes/enzymology , Animals , Antibodies/blood , Arthritis, Experimental/blood , Arthritis, Experimental/immunology , Biomarkers/metabolism , Cell Proliferation , Class Ia Phosphatidylinositol 3-Kinase/genetics , Disease Models, Animal , Gene Deletion , Immunity , Inducible T-Cell Co-Stimulator Protein/metabolism , Interleukin-6/blood , Lymph Nodes/pathology , Mice, Inbred C57BL , Signal Transduction
5.
J Leukoc Biol ; 110(5): 867-884, 2021 11.
Article in English | MEDLINE | ID: mdl-33527556

ABSTRACT

The interaction between the T-lymphocyte costimulatory molecule ICOS and its ligand (ICOS-L) is needed for efficient immune responses, but expression levels are tightly controlled, as altered expression of ICOS or ICOS-L may lead to immunodeficiency, or favor autoimmune diseases and tumor growth. Using cells of mouse B cell lymphoma (M12.C3) and melanoma (B16), or hamster CHO cells transfected with various forms of mouse ICOS-L, and ICOS+ T cell lines, we show that, within minutes, ICOS induces significant downmodulation of surface ICOS-L that is largely mediated by endocytosis and trans-endocytosis. So, after interaction with ICOS+ cells, ICOS-L was found inside permeabilized cells, or in cell lysates, with significant transfer of ICOS from ICOS+ T cells to ICOS-L-expressing cells, and simultaneous loss of surface ICOS by the T cells. Data from cells expressing ICOS-L mutants show that conserved, functionally important residues in the cytoplasmic domain of mouse ICOS-L (Arg300 , Ser307 and Tyr308 ), or removal of ICOS-L cytoplasmic tail have minor effect on its internalization. Internalization was dependent on temperature, and was partially dependent on actin polymerization, the GTPase dynamin, protein kinase C, or the integrity of lipid rafts. In fact, a fraction of ICOS-L was detected in lipid rafts. On the other hand, proteinase inhibitors had negligible effects on early modulation of ICOS-L from the cell surface. Our data add a new mechanism of control of ICOS-L expression to the regulation of ICOS-dependent responses.


Subject(s)
Endocytosis/physiology , Inducible T-Cell Co-Stimulator Ligand/metabolism , Inducible T-Cell Co-Stimulator Protein/metabolism , Animals , CHO Cells , Cricetinae , Cricetulus , Down-Regulation , Lymphocyte Activation/immunology , Melanoma, Experimental , Mice , Mice, Inbred C57BL , Mice, Knockout
6.
Int J Mol Sci ; 21(21)2020 Nov 05.
Article in English | MEDLINE | ID: mdl-33167415

ABSTRACT

Mesoporous bioactive glass nanospheres (NanoMBGs) have high potential for clinical applications. However, the impact of these nanoparticles on the immune system needs to be addressed. In this study, the biocompatibility of SiO2-CaO NanoMBGs was evaluated on different mouse immune cells, including spleen cells subsets, bone marrow-derived dendritic cells (BMDCs), or cell lines like SR.D10 Th2 CD4+ lymphocytes and DC2.4 dendritic cells. Flow cytometry and confocal microscopy show that the nanoparticles were rapidly and efficiently taken up in vitro by T and B lymphocytes or by specialized antigen-presenting cells (APCs) like dendritic cells (DCs). Nanoparticles were not cytotoxic and had no effect on cell viability or proliferation under T-cell (anti-CD3) or B cell (LPS) stimuli. Besides, NanoMBGs did not affect the balance of spleen cell subsets, or the production of intracellular or secreted pro- and anti-inflammatory cytokines (TNF-α, IFN-γ, IL-2, IL-6, IL-10) by activated T, B, and dendritic cells (DC), as determined by flow cytometry and ELISA. T cell activation surface markers (CD25, CD69 and Induced Costimulator, ICOS) were not altered by NanoMBGs. Maturation of BMDCs or DC2.4 cells in vitro was not altered by NanoMBGs, as shown by expression of Major Histocompatibility Complex (MHC) and costimulatory molecules (CD40, CD80, CD86), or IL-6 secretion. The effect of wortmannin and chlorpromazine indicate a role for phosphoinositide 3-kinase (PI3K), actin and clathrin-dependent pathways in NanoMBG internalization. We thus demonstrate that these NanoMBGs are both non-toxic and non-inflammagenic for murine lymphoid cells and myeloid DCs despite their efficient intake by the cells.


Subject(s)
Calcium Compounds/chemistry , Dendritic Cells/drug effects , Materials Testing/methods , Nanospheres/chemistry , Oxides/chemistry , Silicon Dioxide/chemistry , Animals , Bone Marrow Cells/cytology , Bone Marrow Cells/drug effects , Bone Marrow Cells/physiology , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Cell Survival/immunology , Cells, Cultured , Cytokines/metabolism , Dendritic Cells/cytology , Dendritic Cells/immunology , Female , Immunologic Techniques , Inflammation Mediators/metabolism , Lymphocyte Activation/drug effects , Male , Mice , Mice, Inbred C57BL , Porosity , Spleen/cytology
7.
PLoS One ; 14(7): e0219449, 2019.
Article in English | MEDLINE | ID: mdl-31283790

ABSTRACT

Signaling through the inducible costimulator ICOS is required for the homeostasis and function of various immune cell populations, with an outstanding role in the generation and maintenance of germinal centers. Very recently, it has been suggested that the clinical phenotype of ICOS-deficient patients is much broader than initially anticipated and the innate immune response might be also affected. However, the role of the ICOS/ICOS-Ligand axis in the homeostasis and development of innate NK cells is not known, and reports on its participation in NK cell activation are scarce. NK cells may express low levels of ICOS that are markedly enhanced upon activation. We show here that ICOS-deficient (ICOS-KO) mice present low NK cell numbers and defects in the homeostasis of these cells, with delayed maturation and altered expression of the developmental NK cell markers CD122, NK1.1, CD11b or CD27. Our experiments in mixed bone marrow chimera mice indicate that, both, cell-intrinsic defects of ICOS-KO NK and deficiencies in the milieu of these mice contribute to the altered phenotype. ICOS-deficient NK cells show impaired production of IFN-γ and cytotoxicity, and a final outcome of defects in NK cell-mediated effector function during the response to poly(I:C) or vaccinia virus infection in vivo. Interestingly, we show that murine innate cells like IL-2-cultured NK and bone marrow-derived dendritic cells can simultaneously express ICOS and ICOS-Ligand; both molecules are functional in NK intracellular signaling, enhancing early phosphorylation of Akt and Erk, or IFN-γ secretion in IL-2-activated NK cells. Our study shows the functional importance of the ICOS/ICOS-L pair in NK cell homeostasis, differentiation and activity and suggests novel therapeutic targets for NK manipulation.


Subject(s)
Inducible T-Cell Co-Stimulator Protein/genetics , Killer Cells, Natural/metabolism , Animals , Apoptosis , CD11b Antigen/metabolism , Cell Differentiation , Extracellular Signal-Regulated MAP Kinases/metabolism , Inducible T-Cell Co-Stimulator Ligand/genetics , Inducible T-Cell Co-Stimulator Ligand/metabolism , Inducible T-Cell Co-Stimulator Protein/deficiency , Inducible T-Cell Co-Stimulator Protein/metabolism , Interferon-gamma/metabolism , Interleukin-2/pharmacology , Killer Cells, Natural/cytology , Killer Cells, Natural/drug effects , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Knockout , Phosphorylation/drug effects , Poly I-C/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism , Vaccinia/immunology , Vaccinia/pathology
8.
Front Immunol ; 9: 332, 2018.
Article in English | MEDLINE | ID: mdl-29535720

ABSTRACT

Class IA phosphatidylinositol 3-kinase (PI3K) catalytic subunits p110α and p110δ are targets in cancer therapy expressed at high levels in T lymphocytes. The role of p110δ PI3K in normal or pathological immune responses is well established, yet the importance of p110α subunits in T cell-dependent immune responses is not clear. To address this problem, mice with p110α conditionally deleted in CD4+ and CD8+ T lymphocytes (p110α-/-ΔT) were used. p110α-/-ΔT mice show normal development of T cell subsets, but slightly reduced numbers of CD4+ T cells in the spleen. "In vitro," TCR/CD3 plus CD28 activation of naive CD4+ and CD8+ p110α-/-ΔT T cells showed enhanced effector function, particularly IFN-γ secretion, T-bet induction, and Akt, Erk, or P38 activation. Tfh derived from p110α-/-ΔT cells also have enhanced responses when compared to normal mice, and IL-2 expanded p110α-/-ΔT CD8+ T cells had enhanced levels of LAMP-1 and Granzyme B. By contrast, the expansion of p110α-/-ΔT iTreg cells was diminished. Also, p110α-/-ΔT mice had enhanced anti-keyhole limpet hemocyanin (KLH) IFN-γ, or IL-4 responses and IgG1 and IgG2b anti-KLH antibodies, using CFA or Alum as adjuvant, respectively. When compared to WT mice, p110α-/-ΔT mice inoculated with B16.F10 melanoma showed delayed tumor progression. The percentage of CD8+ T lymphocytes was higher and the percentage of Treg cells lower in the spleen of tumor-bearing p110α-/-ΔT mice. Also, IFN-γ production in tumor antigen-activated spleen cells was enhanced. Thus, PI3K p110α plays a significant role in antigen activation and differentiation of CD4+ and CD8+ T lymphocytes modulating antitumor immunity.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Class I Phosphatidylinositol 3-Kinases/immunology , Immunity, Cellular , MAP Kinase Signaling System/immunology , Neoplasms, Experimental/immunology , T-Lymphocytes, Regulatory/immunology , Animals , CD8-Positive T-Lymphocytes/pathology , Class I Phosphatidylinositol 3-Kinases/genetics , Extracellular Signal-Regulated MAP Kinases/genetics , Extracellular Signal-Regulated MAP Kinases/immunology , Interferon-gamma/genetics , Interferon-gamma/immunology , MAP Kinase Signaling System/genetics , Mice , Mice, Knockout , Neoplasms, Experimental/genetics , Neoplasms, Experimental/pathology , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/immunology , T-Lymphocytes, Regulatory/pathology
9.
J Leukoc Biol ; 95(3): 441-50, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24212096

ABSTRACT

Tregs are anergic CD4(+)CD25(+)Foxp3(+) T lymphocytes exerting active suppression to control immune and autoimmune responses. However, the factors in TCR recognition underlying Treg differentiation are unclear. Based on our previous data, we hypothesized that Treg TCR/CD3 antigen receptor complexes might differ from those of CD4(+)CD25(-) Tconv. Expression levels of TCR/CD3, CD3ε,ζ chains, or other molecules involved in antigen signaling and the characteristics of CD3ε chains were analyzed in thymus or spleen Treg cells from normal mice. Tregs had quantitative and qualitatively distinct TCR/CD3 complexes and CD3ε chains. They expressed significantly lower levels of the TCR/CD3 antigen receptor, CD3ε chains, TCR-ζ chain, or the CD4 coreceptor than Tconv. Levels of kinases, adaptor molecules involved in TCR signaling, and early downstream activation pathways were also lower in Tregs than in Tconv. Furthermore, TCR/CD3 complexes in Tregs were enriched in CD3ε chains conserving their N-terminal, negatively charged amino acid residues; this trait is linked to a higher activation threshold. Transfection of mutant CD3ε chains lacking these residues inhibited the differentiation of mature CD4(+)Foxp3(-) T lymphocytes into CD4(+)Foxp3(+) Tregs, and differences in CD3ε chain recognition by antibodies could be used to enrich for Tregs in vivo. Our results show quantitative and qualitative differences in the TCR/CD3 complex, supporting the hyporesponsive phenotype of Tregs concerning TCR/CD3 signals. These differences might reconcile avidity and flexible threshold models of Treg differentiation and be used to implement therapeutic approaches involving Treg manipulation.


Subject(s)
CD3 Complex/metabolism , Cell Differentiation/immunology , T-Lymphocytes, Regulatory/cytology , Animals , Female , Flow Cytometry , Immunoblotting , Mice , Mice, Inbred C57BL , T-Lymphocytes, Regulatory/metabolism
10.
J Mater Chem B ; 2(22): 3469-3479, 2014 Jun 14.
Article in English | MEDLINE | ID: mdl-32261467

ABSTRACT

The interaction of new nanocomposite mesoporous glass/hydroxyapatite (MGHA) scaffolds with immune cells involved in both innate and acquired immunity has been studied in vitro as an essential aspect of their biocompatibility assessment. Since the immune response can be affected by the degradation products of bioresorbable scaffolds and scaffold surface changes, both processes have been evaluated. No alterations in proliferation and viability of RAW-264.7 macrophage-like cells were detected after culture on MGHA scaffolds which did not induce cell apoptosis. However, a slight cell size decrease and an intracellular calcium content increase were observed after contact of this cell line with MGHA scaffolds or their extracts. Although no changes in the percentages of RAW cells with low and high contents of reactive oxygen species (ROS) are observed by the treatment with 7 day extracts, this study has revealed modifications of these percentages after direct contact with scaffolds and by the treatment with 24 h extracts, related to the high reactivity/bioactivity of this MGHA nanocomposite at initial times. Furthermore, when normal fresh murine spleen cells were used as an experimental model closer to physiological conditions, no significant alterations in the activation of different immune cell subpopulations were detected in the presence of 24 h MGHA extract. MGHA scaffolds did not affect either the spontaneous apoptosis or intracellular cytokine expression (IL-2, IL-10, IFN-γ, and TNF-α) after 24 h treatment. The results obtained in the present study with murine immune cell subpopulations (macrophages, lymphocytes B, lymphocytes T and natural killer cells) support the biocompatibility of the MGHA material and suggest an adequate host tissue response to their scaffolds upon their implantation.

11.
Arthritis Rheum ; 63(6): 1562-72, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21380996

ABSTRACT

OBJECTIVE: To investigate the costimulatory role of Crry/p65 (Crry), a membrane complement regulatory protein, on the expansion and function of natural Treg cells and their ability to ameliorate proteoglycan-induced arthritis (PGIA), an animal model of inflammatory arthritis in which the role of natural Treg cells is not well established. METHODS: CD4+CD25+ natural Treg cells from BALB/c mice were activated in vitro and costimulated by Crry. The expanded cells were phenotypically characterized, and their suppressive effect on T cell proliferation was assayed in vitro. The potential prophylactic and therapeutic effects of this population versus those of natural Treg cells in PGIA were studied. The clinical score, histology, the antigen-specific isotype antibody pattern, in vitro T cell responses, and the presence of Treg cells in the paws were studied. RESULTS: Crry costimulation enhanced the in vitro expansion of natural Treg cells while maintaining their phenotypic and suppressive properties. Crry-expanded Treg cells had stronger suppressive properties in vivo and a longer ameliorating effect in the PGIA model than did natural Treg cells. Crry-expanded Treg cells suppressed T cell- and B cell-dependent responses in PGIA, changing the pathogenic antibody isotype pattern and decreasing antigen-dependent secretion of cytokines, including interferon-γ, interleukin-12 (IL-12), and IL-17. Increased FoxP3 expression was detected in the paws of mice transferred with Crry-expanded Treg cells. CONCLUSION: Crry-mediated costimulation facilitates in vitro expansion of natural Treg cells while maintaining their suppressive properties in vitro and in vivo in the PGIA model. These results highlight the potential of the complement regulatory protein Crry to costimulate and expand natural Treg cells capable of suppressing disease in an animal model of chronic inflammatory arthritis.


Subject(s)
Arthritis/immunology , Receptors, Complement/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Arthritis/chemically induced , B-Lymphocytes/immunology , Cytokines/metabolism , Female , Forkhead Transcription Factors/biosynthesis , Interleukin-2 Receptor alpha Subunit/immunology , Lymphocyte Activation/immunology , Mice , Mice, Inbred BALB C , Proteoglycans/adverse effects , Receptors, Complement 3b
12.
Br J Haematol ; 135(4): 517-9, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17054674

ABSTRACT

This study aimed at characterising the distribution of human leucocyte antigen (HLA)-C alleles in a large group of patients with B chronic lymphocytic leukaemia from Southeastern Spain. Ninety-eight adult patients and 194 geographically and ethnically matched controls were studied. HLA-C was determined by polymerase chain reaction sequence-specific primers (PCR-SSP) and PCR-sequence-specific oligonucleotides (SSO) methods. The HLA-Cw*16 allele frequency was found to be significantly increased amongst patients compared with controls in our population (27.6% vs. 12.4%, P = 0.0012, Pc = 0.016). HLA-C dimorphism was also analysed but no association was found.


Subject(s)
HLA-C Antigens/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Adult , Aged , Aged, 80 and over , Case-Control Studies , Female , Gene Frequency , Genetic Predisposition to Disease , Histocompatibility Testing/methods , Humans , Male , Middle Aged , Polymerase Chain Reaction/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...