Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Int Microbiol ; 13(3): 123-34, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20890846

ABSTRACT

A cultivation-independent approach based on polymerase chain reaction (PCR)-amplified partial small subunit rRNA genes was used to characterize bacterial populations in the surface soil of a commercial pear orchard consisting of different pear cultivars during two consecutive growing seasons. Pyrus communis L. cvs Blanquilla, Conference, and Williams are among the most widely cultivated cultivars in Europe and account for the majority of pear production in Northeastern Spain. To assess the heterogeneity of the community structure in response to environmental variables and tree phenology, bacterial populations were examined using PCR-denaturing gradient gel electrophoresis (DGGE) followed by cluster analysis of the 16S ribosomal DNA profiles by means of the unweighted pair group method with arithmetic means. Similarity analysis of the band patterns failed to identify characteristic fingerprints associated with the pear cultivars. Both environmentally and biologically based principal-component analyses showed that the microbial communities changed significantly throughout the year depending on temperature and, to a lesser extent, on tree phenology and rainfall. Prominent DGGE bands were excised and sequenced to gain insight into the identities of the predominant bacterial populations. Most DGGE band sequences were related to bacterial phyla, such as Bacteroidetes, Cyanobacteria, Acidobacteria, Proteobacteria, Nitrospirae, and Gemmatimonadetes, previously associated with typical agronomic crop environments.


Subject(s)
Bacteria/classification , Bacteria/genetics , Biodiversity , Metagenome , Soil Microbiology , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Electrophoresis, Polyacrylamide Gel , Molecular Sequence Data , Nucleic Acid Denaturation , Phylogeny , Polymerase Chain Reaction , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Spain
2.
Int. microbiol ; 13(3): 123-134, sept. 2010. ilus, tab
Article in English | IBECS | ID: ibc-84636

ABSTRACT

A cultivation-independent approach based on polymerase chain reaction (PCR)-amplified partial small subunit rRNA genes was used to characterize bacterial populations in the surface soil of a commercial pear orchard consisting of different pear cultivars during two consecutive growing seasons. Pyrus communis L. cvs Blanquilla, Conference, and Williams are among the most widely cultivated cultivars in Europe and account for the majority of pear production in Northeastern Spain. To assess the heterogeneity of the community structure in response to environmental variables and tree phenology, bacterial populations were examined using PCR-denaturing gradient gel electrophoresis (DGGE) followed by cluster analysis of the 16S ribosomal DNA profiles by means of the unweighted pair group method with arithmetic means. Similarity analysis of the band patterns failed to identify characteristic fingerprints associated with the pear cultivars. Both environmentally and biologically based principal-component analyses showed that the microbial communities changed significantly throughout the year depending on temperature and, to a lesser extent, on tree phenology and rainfall. Prominent DGGE bands were excised and sequenced to gain insight into the identities of the predominant bacterial populations. Most DGGE band sequences were related to bacterial phyla, such as Bacteroidetes, Cyanobacteria, Acidobacteria, Proteobacteria, Nitrospirae, and Gemmatimonadetes, previously associated with typical agronomic crop environments (AU)


No disponible


Subject(s)
Bacteria/classification , Bacteria/genetics , Biodiversity , Soil Microbiology , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , Phylogeny , Polymerase Chain Reaction , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
3.
Peptides ; 27(11): 2575-84, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16762457

ABSTRACT

Cyclic decapeptides were developed based on the previously reported peptide c(LysLeuLysLeuLysPheLysLeuLysGln). These compounds were active against the economically important plant pathogenic bacteria Erwinia amylovora, Pseudomonas syringae and Xanthomonas vesicatoria. A library of 56 cyclic decapeptides was prepared and screened for antibacterial activity and eukaryotic cytotoxicity, and led to the identification of peptides with improved minimum inhibitory concentration (MIC) against P. syringae (3.1-6.2 microM) and X. vesicatoria (1.6-3.1 microM). Notably, peptides active against E. amylovora (MIC of 12.5-25 microM) were found, constituting the first report of cyclic peptides with activity towards this bacteria. A second library based on the structure c(X(1)X(2)X(3)X(4)LysPheLysLysLeuGln) with X being Lys or Leu yielded peptides with optimized activity profiles. The activity against E. amylovora was further improved (MIC of 6.2-12.5 microM) and the best peptides displayed a low eukaryotic cytotoxicity at concentrations 30-120 times higher than the MIC values. A design of experiments permitted to define rules for high antibacterial activity and low cytotoxicity, being the main rule X(2) not equal X(3), and the secondary rule X(4)=Lys. The best analogs can be considered as good candidates for the development of effective antibacterial agents for use in plant protection.


Subject(s)
Bacteria/drug effects , Drug Design , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Plant Diseases , Amino Acid Sequence , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Combinatorial Chemistry Techniques , Hemolysis/drug effects , Humans , Microbial Sensitivity Tests , Molecular Sequence Data , Peptide Library , Plant Diseases/microbiology
4.
Appl Environ Microbiol ; 72(5): 3302-8, 2006 May.
Article in English | MEDLINE | ID: mdl-16672470

ABSTRACT

Short peptides of 11 residues were synthesized and tested against the economically important plant pathogenic bacteria Erwinia amylovora, Pseudomonas syringae, and Xanthomonas vesicatoria and compared to the previously described peptide Pep3 (WKLFKKILKVL-NH(2)). The antimicrobial activity of Pep3 and 22 analogues was evaluated in terms of the MIC and the 50% effective dose (ED(50)) for growth. Peptide cytotoxicity against human red blood cells and peptide stability toward protease degradation were also determined. Pep3 and several analogues inhibited growth of the three pathogens and had a bactericidal effect at low micromolar concentrations (ED(50) of 1.3 to 7.3 microM). One of the analogues consisting of a replacement of both Trp and Val with Lys and Phe, respectively, resulted in a peptide with improved bactericidal activity and minimized cytotoxicity and susceptibility to protease degradation compared to Pep3. The best analogues can be considered as potential lead compounds for the development of new antimicrobial agents for use in plant protection either as components of pesticides or expressed in transgenic plants.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Gram-Negative Bacteria/drug effects , Melitten/pharmacology , Peptides/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antimicrobial Cationic Peptides/chemical synthesis , Antimicrobial Cationic Peptides/chemistry , Circular Dichroism , Drug Design , Erwinia amylovora/drug effects , Erythrocytes/drug effects , Humans , Melitten/chemical synthesis , Melitten/chemistry , Microbial Sensitivity Tests , Peptide Hydrolases/metabolism , Peptides/chemical synthesis , Peptides/chemistry , Plant Diseases/microbiology , Pseudomonas syringae/drug effects , Xanthomonas vesicatoria/drug effects
5.
Peptides ; 27(11): 2567-74, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16730857

ABSTRACT

Head-to-tail cyclic peptides of 4-10 residues consisting of alternating hydrophilic (Lys) and hydrophobic (Leu and Phe) amino acids were synthesized and tested against the economically important plant pathogenic bacteria Erwinia amylovora, Xanthomonas vesicatoria and Pseudomonas syringae. The antibacterial activity, evaluated as the minimal inhibitory concentration (MIC), the cytotoxicity against human red blood cells and stability towards protease degradation were determined. The influence of cyclization, ring size, and replacement of l-Phe with d-Phe on antibacterial and hemolytic activities was studied and correlated with the degree of structuring and hydrophobicity. Our results showed that linear peptides were inactive against the three bacteria tested. Cyclic peptides were active only toward X. vesicatoria and P. syringae, being c(KLKLKFKLKQ) (BPC10L) the most active peptide with MIC values of 6.25 and 12.5 microM, respectively. The improved antibacterial activity of cyclic peptides compared to their linear counterparts was associated to an increase of the hydrophobicity, represented as RP-HPLC retention time (t(R)), and secondary structure content which are related to an enhanced amphipathicity. A decrease of antibacterial and hemolytic activities was observed when a d-Phe was introduced into the cyclic sequences, which was attributed to their low amphipathicity as shown by their low secondary structure content and low t(R). The small size, simple structure, bactericidal effect, and stability to protease degradation of the best peptides make them potential candidates for the development of effective antibacterial agents for use in plant protection.


Subject(s)
Anti-Bacterial Agents/chemistry , Antimicrobial Cationic Peptides/chemistry , Drug Design , Peptides, Cyclic/chemistry , Plant Diseases , Antimicrobial Cationic Peptides/pharmacology , Bacteria/drug effects , Cyclization , Microbial Sensitivity Tests , Peptides, Cyclic/pharmacology , Plant Diseases/microbiology , Plants
SELECTION OF CITATIONS
SEARCH DETAIL
...