Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Commun (Camb) ; 59(36): 5312-5328, 2023 May 02.
Article in English | MEDLINE | ID: mdl-37039236

ABSTRACT

Recent innovations in single-cell technologies have opened up exciting possibilities for profiling the omics of individual cells. Minimally invasive analysis tools that probe and remove the contents of living cells enable cells to remain in their standard microenvironment with little impact on their viability. This negates the requirement of lysing cells to access their contents, an advancement from previous single-cell manipulation methods. These novel methods have the potential to be used for dynamic studies on single cells, with many already providing high intracellular spatial resolution. In this article, we highlight key technological advances that aim to remove the contents of living cells for downstream analysis. Recent applications of these techniques are reviewed, along with their current limitations. We also propose recommendations for expanding the scope of these technologies to achieve comprehensive single-cell tracking in the future, anticipating the discovery of subcellular mechanisms and novel therapeutic targets and treatments, ultimately transforming the fields of spatial transcriptomics and personalised medicine.

2.
Development ; 145(24)2018 12 14.
Article in English | MEDLINE | ID: mdl-30413560

ABSTRACT

Peripheral nerves are highly regenerative, in contrast to the poor regenerative capabilities of the central nervous system (CNS). Here, we show that adult peripheral nerve is a more quiescent tissue than the CNS, yet all cell types within a peripheral nerve proliferate efficiently following injury. Moreover, whereas oligodendrocytes are produced throughout life from a precursor pool, we find that the corresponding cell of the peripheral nervous system, the myelinating Schwann cell (mSC), does not turn over in the adult. However, following injury, all mSCs can dedifferentiate to the proliferating progenitor-like Schwann cells (SCs) that orchestrate the regenerative response. Lineage analysis shows that these newly migratory, progenitor-like cells redifferentiate to form new tissue at the injury site and maintain their lineage, but can switch to become a non-myelinating SC. In contrast, increased plasticity is observed during tumourigenesis. These findings show that peripheral nerves have a distinct mechanism for maintaining homeostasis and can regenerate without the need for an additional stem cell population.This article has an associated 'The people behind the papers' interview.


Subject(s)
Central Nervous System/physiology , Homeostasis , Nerve Regeneration/physiology , Neural Stem Cells/cytology , Peripheral Nerves/physiology , Animals , Axons/metabolism , Carcinogenesis/pathology , Cell Proliferation , Extracellular Matrix Proteins/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Myelin Sheath/metabolism , Neural Stem Cells/metabolism , Neuronal Plasticity , Peripheral Nerves/cytology , Peripheral Nerves/ultrastructure , Schwann Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...